THE TRAINING OF DOGS

FOR FIELD RECONNAISSANCE

Final Report

Principal Investigator Roger W. McIntire, Ph.D.

September 1965 U. S. Army Contract No. DA-18-001-AMC-260(X)

> Canine Behavior Laboratory University of Maryland
> College Park, Maryland

DDC

DDC-IRA F

Best
 Available Copy

THE TRAINING OF DOGS

FOR FIELD RECONNAISSANCE

Final Report
Principal Investigator
Rogar W. Mcintire, Ph.D.

September 1965
U. S. Army Contract No. DA-18-001-AMC-260(X)

Canine Behavior Laboratory
University of Maryland College Park, Maryland
U. S. ARMY LIMITED WAR LABORATORY

Aberdeen Proving Ground, Maryland 21005

ACKHONLEDGENETHTS

The Principal Investigator feels special apprecistion to Mis. Meibs Aldridge, Mr. Thomas Colley, Mr. Meivin Kreithen and Mr. James Wright for their extraordinary dedication to their responsibilities in making this project a success.

Special thanks are felt for Dr. Max Krauss and, Major Stotser of the Limited War Laboratory for their numerous, frank and objective opinions and adivice on the developenent of the systen.

Also eppreciated is the fine cooperation of it. Frazer and Sgt. Scctt of the Post Range Office, Fort Meade. The effort and time of these men made the exercises of the advanced system possible. The candid advice of sgt. Victor Beugh is also appreciated in his extended visits with the leboratory.

The advice and csoperation of the 26th Scout Dog Platoon, Fort Benning, Ga., was an essential contribution to the success of the contract. Their screening and selection of the last dogs to be trained is particularly sppreciated.
PAPI I. Reseaxch exploring the alernative means of developing a free-ranging reconnalasance system
A. Introduction to the problem. 2
B. Investigation of the yisual and cliactory capacities of the dog.
C. Investigation of the bulb and harness technique.6
PAFT II. Development and modification of the proposed systern. 8
A. Examination and developnent of a new alert indicator. 9
B. The substitution of praise for food revard. 12
c. Selection of subjecta. 23
D. Preliminary training. 13
PART III. Regults of training exercises. 16
A. Daily. 17
B. Exercise for an invited audience. 32
C. The ten-day test program. 35
PART IV. Conclusion and recomendations. 38
APPEnDIX A, Interim Report on the Training of Does for Pield Reconnaissance.
Appendix B. Training Manuel for Pree-Ringing Canine PersonnelReconraissance.
APFETDIX C. Technical Description of the Spectal Equipment.

TABLE OP FICUTES

> Mo. of the greceeding page.

P1g, 1	The Military Problem in Pavoreble and Unferorable Yinds.	2
Pig, 2	Position and tre of the spectal Equipreerst.	10
Fig. 3	Inlustration of the Froblems in the Two Day Exercize.	33
Pig. 4	Performance of Fero in the Ten-Day Test.	36
Pig. 5	Pertornance of Caesar in the Tenmbay Test.	36
Pig. 6	Pe:formance 0: slugger in the TermDay Test.	37

TKBI2

Page

Tabie 1, Session Sumary Sheet Used in Training 18
2hBIE 2. Nero's Perforeance in Two Konths Training 22
TABLE 3. Cacsar's Performace in Two Yonths Training 27
 DEVELCPTNS A FREC-PAXGIEG RECONBAISSAXCE SYSTENA.

8. Introfuction to the problets.

The question investigeted in the remeareh reported here whe the feasiblity of trainieg a free-suogitis leg to perforim personech reconcaisasace. The asprytions abort tarrain, weater acd otber pertinent conditions of the miltan problew were cherged tis the equloprext of the profect prosreszed. The geseral trexd of these chengex

 callar kind of ailitery rait to te protected. Lowever, se the prom ject progressed, the coudtions for the operaticn of the system becane wore and more specifised and 1inited. The finnl focus of the lwrestieation was upos providixg effective permonrel recomelssace for s foot petrol progrewing aloez a pethracy, trail, or roed. The reoornaissance ras to bave acedinfe efficiency for providing maning of tite presesce of eacm persondel so that the petrol sould be protected fros an mburh consisting of mall aym fire.

The sccot dog pragrati nor mantained by the fing proviles such recoriaissance, but wis considered to heve some disadrantages. In tiat present system the baniler mintales tive dce on leasin and exposer hizeelf in the wane Ifeld yosition as the dog. If the patrol is followine close beintud and the rind bearing bumen acent is not pavorable (see Fig. 18), it is likels that the kill zone of the anbush wili be entered before tive dig alerts the hamdler. The advintages of the off-ieash free-raging sog are iilustrated in Pig. 2b. In this case, tile dog is preceeding the bandier and the pafrol at a

FIG. I THE MILITARY PROBLEM UNDER PAVOURABLE

気岳

 cil

Suniects=

 ell =ivinations.

 and the fouttis sicie

wos placed in the center of this fourth side and airconditioned via ducts from the laboratory building. The aide of the chamber facing the field was of thermopane glass which allowed a dog inside an unobstructed viaw of the field. Just inside the window were three panels bolted to the floor one foot apart. When one of these panels wes pressed by the dog's paw, programing and recording equipment was activated inside the building. This equipment controlled a feeder which could provide 10 g . portions of a mixture of horse meat and Purina Dog Chov to a steel cup inside the experimental chamber.

Procedure: After the two days of depriv. tion mentioned above, each subject was given a one-hour session in the chember each day. On Day 1 of this procedure only a lever press on any panel would bring about a food pellet. On Day 2 any two lever presses on the same panel would bring arnut a food pellet. From Day 3 forwerd, only one panel would bring about food pellets at any given time. Until a ratio of ten presses for one food pellet had been reached, the panel which would give sood was changed randonily after each four revards.

At this point the experimenter took control of which
panel would give pellets and would point to it from outaide the window of the eajerimental chember.

On the 20th day of the eaperimentel procedure all subjects were chocsing without hesitation the panel pointed to by the experimenter. For the next 20 days pointing by the experimenter has done with one of three instrum ments: i) an M-1 rifle if tha panel co the dos's left Nas to provide the food pellets, 2) a graden rake if the panel to the dog's right was to provide the food pellets, and 3) pointing with the hand if the middie penel was to give food peliets. From the 4ist aby forward, the sppropriate instrument was hold at "present arms" without pointing. If no instrument was to be ufed (middle pansl) the experimenter merely stood in front of the window with his hands at bis sides. From the 60 th to the $90 t \mathrm{~h}$ day the distance of the experimenter from the windo was varied from 5 to 100 feet under each of the following conditions: 1) experimenter prone, 2) experimenter standing, 3) experimenter crouching, 4) In daylight, 5) at Ausk, and 6) at night.

Results and Conclusions: The three housds used in the experinent responded at a better than chance level only in days light with the experimenter standing and within 65 feet. The German She pard, however; was consistantly

Abstract

accurate at 100 feet ir $\overline{\text { i }}$ yligat when tise experis. menter was standing, However, under all otber conditions reaponding was ebove chance only at the 5 and 10 soot distances with the night condition giving no occurrence above chance at all.

This experiment supports the conclusion thet canine visual acuity as tested by a discrimination between a motionless armed or unarmed man is such ss to be unreliable in a military stuation.

C. Investisation of the bulb and bsrness technique.

In the interim report subaitted on Juiy 12, 1964 (Appenaix A) developrent of a gystem for personnel reconnaissance was describsd which used food as a reward for the dog's successful performance of pulling a bulb on bis harness when he had contacted a man in his search. This bulb was attachee to a fwiteh which activated a radio signal monitored by the hamdler. The handler then tranamitted a signal to the dog recalling him to receive the reward.

On 13 Juiy, 1964 the present author assumed the responsibility of Principal Investigator to perform the experiment in vision described above, and to continue development and training of the recomnaissance system described above witi few modifications. During this time, and during the discussion involved in a denonstration of the system held at Aberdeen Froving Ground in Dctober of that year, several character-
astics of the system uere noted.

Firat, the bulb guiling response was a strange and unique response for the dog to meke. This mearit that only a cuite obvious and blunt stimulus could bring it about. Therefore, the $20 g$ had to make a visual contact with the decoy before he would respond by pulling the bulb. Training this response was equaliy difficult and was not a procedure siailar to any used by the Scout Dog Platoon which was visited at about this time by personnel associated with the contract.

Second, the dags were not well disciplined and tended to run and search at will rather than under the close direction of training or direction from the handier.

Third, the use of rood reverd and the necessity of a pack on the dog to send and receive tones, plua the pand necessary for the handler to send and receive tones, becane a great load of equipenent and meterisl. It was difficult to see how this much of a logistical problem would be justified in an operational system. Also, the dog eventually satiates and quits working, and, of course, since the dog must be kept hungry he is more vulnerable to illness.

On 13 December, 1964 a new program was begun to deal wita these dericiencies.
part in. developmant ard modification or the FROFOBES BYETEM.

As indicated in Part 1, the previous attempts to develop a canine free-ranging reconarissance systen found grest difficulty in training the dog to make a response wich would operate a radio. Once this was accomplished selectively revarding the dog would develop the situation where the \log would perform only in the presence of a man. All manners of closing switches seen to be extremely strange behaviors to a dog and difficult to troin.

In the first stages of research (see above) many systems had been tried and bulb puiling was the most successful. Even with this system the response could nat be trained to occur on the mere ecent of a man, but only on close visual contact.

At this point it was brought to the investigator's attention that a comercial device was available wich consisted of e collar bolding a transmitter which varied its output of a tone as a result of motion. This device was used to indicate to 8 hunter when his dog was "on a point". This was, in effect, a response which operated a radic, and, in addition, it was a response wich seemed amenable to being brought under the control of a subtle stimulus such as the air-borne scent of a man.

However, the comercial version had several disadvantages when considered as an alert indicator for the reconnaissance system. For example, low poxter output (10 millivatts) prevented effective long reage commanication. Secondly, the use of a u.h.f. channel
(450 max) provides poor penctration of roliage. In fact. jungle path lowses at these frequencies are sufficient to rule out the use of u.b.f. for all jungle purposen exceeding a few hupdred feet. Thirdiy, the transmitter frequency and tyse of modulation vere not compatm ible with any existing Army comounication apparatus.

Also, the "setter seeker" has incorporated in the trangmitter housing a propriatory device wich is called a "jjggle switch". It is an on-off device wich switches as the dog bounces during nomal motion. Thus, only motion or non-motion could be interpreted and discrimination between walking, running and heavy panting was imp possible. Because of these disadrantages the contract allowed that a similar device, with the modifications indicated by these problems would be constructed by the iaboratory. In the constructed device (sec Fig. 2, also Appendix D) the contractors have developed a replacement for the "jiggle switch" uhich will hereafter be referred to as a notion transducer. It is bssicaily a resistance accelerometer. As the dog jostles in walking, the motion transducer produces a mique change in resistance proportional to the instantaneous acceleration of the motion transducer. The advantage of this proportional output over the switching type of system is an increase in the ability of the handler to essess a more exact characterization of the behavior of the dog. With proportional custput, the practiced handler can dis-

[^0]

FIG. 2 POSITION AND USE OF THE SPECIAL EQUPPMENT
criminate between runing and walking and can assess the Figor with wich the dog is performing his task. Operationally, the resistance of the motion tranmacer in converted to an audio tone and the audio tone is telemetered from the dog via an P.M. tranmaitter to the receiver carried by the handler. The changing audio tones are then interpreted by the handier as an indication of the tibavior of the dog. The basic housing of the motion trensducer is the gias: bulb and electrodes of a neon lamp (aR-83). The seal is broken, and instead of neon gas, the bulb is partialiy filled with carbon granules, such as are used in carbon microphones". The bulb is then resealed and the entire assembiy is encapsulated in eqoxy.

The dog radio pack was designed to be conpatible with the RT-176/FRC-10 radio transmitter-receiver.

This restricted the design of the dog transenitter to narrow band F.K. in the frequency range of 38 to $55 \mathrm{Nh} \%$. An added advantage of this choice of receiving equipment is that witn the use of the directional antenna AT-399/PRC, the location of the dog may be tracked while the animal is out of sight of the handler.

The transmitter is housed in a waterproof aluminu container approximately $\% .5^{\prime \prime} \times 3^{\prime \prime} \times 4^{\prime \prime}$. The case is mounted to the bottom of a leather dog collar, and the antenna is mounted on the top of the collar. The weight of the transmitter keeps the antenna ugright, and

[^1] foliage cocditions, better in less obstructed terrein.

The notion transducer wal initially mounted in the trensuitter housing. The transmitter housing, transducer, collar, and antema formed an integral package. It was found, inosever, that if the mom tion transducer were strapped directiy on the foreleg of the dog, much in the fashion of a wristwatch, the signal received by the handler was much easier to interpret. This type of mounting is less desirable mechanically, since a cable must be used to connect the motion transducer to the transuftter housing. The csble, and the motion transducer are subject to snagging in unjerbrush and may be either damaged or 20st. The increase in maintenance caused by the exterior placement of the transducer is countermbaianced by an increase in signal readability.

B. The substitution of praise for food reward.

As mentioned at the conclusion of Part 1 of this report, the use of food reward has many procedural and losistical problems associated with it. In addition to these experiences, close advise and consultation from the 26th Scout Dog Platoon at Fort Benning, Georgia, convinced the personnel directly associaied with the program that praise from the handler as described in FM 20-20 (Military Dog Training and Enployment) should be used instead of food reward. This change in training procedure allowed several advantages:

1) The dog need not be kept hungry and valnerable to ini health.
2) No special equipcent in necessary to revard the dog during field exercises.
3) Satietion is no longer a protlen.

C. Selectira of subjects.

In the prelininary investigations of the problems suveral canine breeds were used (see Appexdix A). Most promising of these vere the Labrador Retrievers and the Geraan Shepards. For the development of the final system the German Shepard was selected for the following reasons:

1) The Shepard shoved potential in the preliminary work.
2) Dogs found acceptable by the Arry vere to be used; their experienced judgment was rith German Shepards.
3) The future possibility of integratine the system with the training procedures of the piny Scout Dog (all Shepards) was a consideration.

D. Preliminary training.

Although a complete detailed description of the train procedures is incorporated in the traicing manual (Appendix B), it is necessary to review these procedures berose presentation of the results of lield tests in Part III.

Following the procedures outlined in FM 20-20 a single handler
 Arter 6 Jamary, 1965 caly dogs approved at Fort Benning in the procedures used there to select doge for scout dor training with the 26th Scout Dog Platoon vere used. On that date forr doga vere received and two of then vere placed in obedience training imsediately.

Some comands such as "STAX" and "COKc" vere elphasized because of their need in the future off-leash urork. Scout dog training was alwo begun in the first fev veeks and was also in accordance with FM 20-20. In these procedures the dos is worked on a short leash (6 foot) attached to a body harness. He is allorred to explore the trail ahead of the handler vith his head up secpling the air. The comand given at the outset of the problem is "SRARCH". A characteristic behavior is noted when the dog contacts the odor of a man. This alertbehevior varies rith individual dogs but is usually a pulling on the leash fith a perking up of the ears and hackles.

As the handler showed an awareness of his dog's charucteristic alert, the longer (25 foot) scout dog leash was used to replace the 6 foot leash. When the handler detected the alert of the dog, the cowemad "STAY" would be given and ths leash slackened. After e brief interval (usuaily 30 efc.) the dog was returned to the handler by a whistle which at first needed to be given alteraately with "cark", but later vas a sufficient comand in itself.

Off-leash field problems began subtely by the mere dropping of the leash by the handler. The dog was alloved to proceed aragging the leasi and to alert on the decoy. At this point, the handler gave
the comand "STAY" if the sog had not epontaneoubly stoppen. If the dog had stopped, the handier merely wafted 30 sec, and returned in? dog by the whistle and praiaed him. On increasingly irequent occasions the 25 foot leash was not attached to the harness stall beiore the search problem began.

Thus, the daily training exercises began with the ramoval of the choke collar used for discipline and the attachment of the body harness. When the dog was expected to move ou.t to a distance which might keep the bandler from seeing the typical stop-alert, the motion transducer described above was also put on the dog. The dog zoved out c. he command "SEARCK" and mairtained a trail distance of about 200 yh. is ahead of the handler.

PART IJI. nesulis of maining exercises.

- 16 -

A. Daily trainins exercises,

When the dogs receifed frow the 26th Scout Dog Platoon zere begun in field triais, a session sumary sheet was constructed to collect all the information which was believed to be of value. Such a sumary sheet is presented in Table 1. The headed colums bear some explanation.

Column 1 - Dete, cire in/cut.
All snimels receive an hour and a half training each merning and each afternoon. Scme varisnce is encountered due to weather, êc., so a separate record is needed.

Column 2 - Cum. Tot. Time.
Cumulative total time spent with the animal in training is, so far, our best predictor of the animal's, level of performance.

Column 3-Discipl. Time.
Discipline time is spent with an emphasis on comands given at a distance (stay, some, go, sit, etc.). Until 60 hours is logged in discipline time, no t_{1} all work is attempted.

Column 4 - Worst Command.
This allows the Responsible Investigator an estimate of the dog's performance level at a glance.

Column 5-Mo. of Mriala.
Columns 5 through 29 refer to + work. In this case, "trials" mean number of reconnaissance problems set up.

Column 6 - No. Persons w/Hand.
The number of people moring with the handier is recorded here.

Column 7 - Fio. or Decoys.
The number of persona concealed in ambush for each problem is recorded here.

Column 8 - Who?
This information allous the Responsible Investigator to insure that the dogs do not become dependent on one or a fer decoys.

Column 9 - Setter Seeker.
The use or non-use of radio equipment on the dog is recorded here.

Column 10 - Weather.
Column 11 - \bar{M} Initial Dist. to Decoy.
Mean initial distance to the decoy refers to the distance from the handler to the decoy when the dog is sent out.

Column 12 - M Finel Dist. to Decoy.
Mean final distance to decoy shows how ruch warning the handler has received due to the syatsm.

Coluan 13-1-5 Concealment.
Degree of concesiment is rated here (1w standing at the eide of the train, 5= completely concealed in full effort to remain undetectied).

Column 14 - M Dist. Dog - Decoy.
The distance between the decoy and the dog at the time of detection is recorded h ure.

Column 15 - Rate Come Back 1-5mBad.
The latencr with which the animal returns on comend is rated here (1xupon one short blast of the whistle the dog came straight back on a dead run, 5= the dog had to be colled verbally).

Column 16 - Rate "Fooling" 1-5xBad. The general enthusiasm of the dog for the problem is rated here (2 mcontinued to work steadily needed no Verial camands, $5=d o g$ continuously goofed off, nseded continual verbal discipline).

Column 17 - Stay Command.
At the first stages of trail work, the stay comand is given verbally by the bandler when the docoy radios that they have been detected. The gradual deletion of this coumend is recorded here.

Column 18-8 of Time on Smell.
The dependence of the dog on olfactory cues is estimated here.

```
Colum}19 - % of Time on Vision.
    The dependence of the dog on Fisual cues is estimat-
    ed here.
```

Columin $1-5$ were used merely to indicate the progress that was being made with an individual dog in regard to discipline, and time spent in training. Colwns 6-Il defined the nature of the field reconnaissance problems being presented and Columns 12-19 characterized the dog's performance.

Sumarized in Tables 2 and 3 are the data collected from daily training exercises of Caessr and Nero. These tables present mean values for successive blocks of five problems.

For Nero, the average of Column 12 (final distance from handler to decoy) was 155 yards over May and June, while the average for Column 14 (final distance from dog to decoy) is 49.3 yards. It is this 106 ysron difference that is the advantage of the iree-ranging reconnaissance dog over the regular scout dog. Other important factors in this table are that temperature and number of persons composing the decoy are not factors. For example, under "warm" conditions $\left(80-85^{\circ}\right)$ Nero averaged 42 yards distance to decoy and under "hot" conditions (above 85°) he averaged 55 yards distance. If anything, he was doing better in the hot weather. However, his general enthusiasm was much worse which subtracts confidence from those using him in hot weather.

TABİニ
IEROD'S PERTORMAKCE IT THO MONTHB TRAIUIKG

8	7 8 8 8 8 3 3 7 7 $\mathbf{1}$	$\begin{aligned} & 7 \\ & 8 \\ & 0 \\ & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	圱	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \hline \\ & 1 \\ & 4 \\ & 0 \\ & \frac{8}{6} \\ & \frac{0}{3} \\ & \frac{3}{3} \\ & \hline 7 \end{aligned}$	$\begin{aligned} & \text { Th final dist. dog- } \\ & \text { decoy (yards) } \end{aligned}$	
1	6	7	10	12	12	13	14	18
April 1	0	1	Cool	150	50	3	6	100
April 2	0	1	Cool	200	15	3	13	100
April 5	0	1	COO2	160	25	4	12	100
April 7	0	1	Cool	350	75	4	6	100
April 8	0	1	Cool	230	16	4	6	100
April 9	0	1	Cool	1000	75	4	50	100
April 12	0	1	Cool	800	\cdots	3	50	100
April 13	0	1	Cool	150	6	3	3	100
April 13	0	1	CoOl	189	18	3	1	100
April 16	0	1	Cool	350	75	4	50	100
$\begin{array}{\|} \text { April } 18 \\ -20 \\ \hline \end{array}$	0	1	Cool	605	62	4	27	100
Ari 1121	0	1	Cool	750	80	4	40	100
April 23	0	1	Warm	800	70	4	30	100
$\begin{aligned} & \text { Apri1 } 20 \\ & -26 \\ & \hline \end{aligned}$	0	1	Warm	680	66	4	25	100
April 21	1	2	Warm	500	75	4	30	100
$\begin{aligned} & \text { April } 28 \\ & -29 \\ & \hline \end{aligned}$	2	2	Harm	830	85	4	25	100

pabie e - cómiturid

```
DOO ~ HERO
```

$\stackrel{\square}{0}$		$\begin{aligned} & z \\ & 0 \\ & 0 \\ & 0 \\ & 8 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	\% $\frac{8}{8}$ $\frac{8}{7}$			7 6 0 0 \vdots $\frac{8}{3}$ 3 		
1	6	7	10	11	12	13	14	18
$\begin{array}{r} \text { April } 30 \\ - \text { May } 3 \end{array}$	1	1	Warm	680	77	4	27	100
$\begin{gathered} \text { May } 3 \\ -4 \\ \hline \end{gathered}$	2	2	Warm	330	75	5	25	100
May 4	0	1	Hot	152	69	4	36	100
May 5	1	1	Hot	810	134	4	53	100
May 6	0	1	Werm	540	24	4	50	100
$\begin{array}{r} \text { May } 7 \\ -10 \\ \hline \end{array}$	0	1	Rain	311	94	4	61	100
$\begin{gathered} \text { May } 10 \\ -11 \\ \hline \end{gathered}$	0	1	Hot	570	99	5	62	100
$\begin{gathered} \text { May } 11 \\ -12 \\ \hline \end{gathered}$	0	1	Warm	300	109	4	47	100
$\begin{array}{r} \text { May } 12 \\ -13 \\ \hline \end{array}$	2	1	Warm	360	77	4	38	100
May 17	0	1	Warm	810	120	5	68	100
$\begin{array}{r} \text { May } 18 \\ -12 \\ \hline \end{array}$	0	1	Warm	340	71	4	52	100
$\begin{aligned} & \text { May } 19 \\ & -20 \\ & \hline \end{aligned}$	0	1	Nersa	320	70	5	37	100

DOG - NERO

8	7 0 1 8 0 0 8 8 0 0 0 0	$\begin{aligned} & 7 \\ & 8 \\ & 0 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$				7 4 8 0 6 8 0 8		
1	6	7	10	11	12	13	14	18
$\begin{aligned} & \text { May } 20 \\ & -21 \\ & \hline \end{aligned}$	0	1	Warm	175	72	4	50	100
$\begin{aligned} & \text { May } 21 \\ & -24 \\ & \hline \end{aligned}$	0	1	Warm	215	86	4	41	100
May 24	0	1	Hut	250	130	4	50	100
$\begin{aligned} & \text { May } 25 \\ & -28 \\ & \hline \end{aligned}$	0	1	Harm	910	85	5	60	100
hliv 28	0	1	Verr:	280	85	4	43	100
$\text { Wyy } 31$	0	1	Warm	260	118	5	84	100
$\begin{aligned} & \text { May } 31 \\ & - \text { June } 1 \\ & \hline \end{aligned}$	0	2	Hot	620	580	4	90	100
$\begin{array}{r} \text { June } 1 \\ -2 \\ \hline \end{array}$	0	1	Hot	880	200	5	70	100
$\begin{array}{r} \text { sune } 2 \\ -3 \\ \hline \end{array}$	1	1	Rain	630	363	5	50	100
$\begin{aligned} & \text { Ture } 4 \\ & -9 \end{aligned}$	0	1	Harm	591	560	5	72	100
$\begin{aligned} & \text { June } 9 \\ & -10 \\ & \hline \end{aligned}$	1	1	Hot Darsp	249	129	5	29	100
$\begin{aligned} & \text { June } 10 \\ & -11 \\ & \hline \end{aligned}$	0	1	Hot Damp	136	102	5	29	100

DOG - NERO

O		$\begin{aligned} & 7 \\ & 6 \\ & 9 \\ & 0 \\ & 8 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 8 \quad 3 \\ & 8 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		зихщрренол s-1		
1	E	7	10	11	12	13	14	13
$\begin{aligned} & \text { June } 11 \\ & -14 \\ & \hline \end{aligned}$	0	1	Hot	310	82	4	42	109
$\begin{aligned} & \text { June } 14 \\ & \hline \end{aligned}$	1	2	Harm	450	119	4	43	100
June 17	0	1	Rain	205	90	4	49	200
$\begin{aligned} & \text { June } 17 \\ & -20 \\ & \hline \end{aligned}$	0	1	Harm	325	77	4	18	100
$\begin{aligned} & \text { June } 20 \\ & -21 \\ & \hline \end{aligned}$	0	1	Warm	227	66	5	37.	100
$\begin{aligned} & \text { June } 21 \\ & -22 \\ & \hline \end{aligned}$	0	1	Warm	390	93	4	73	100
$\begin{aligned} & \text { June } 22 \\ & -\quad 24 \end{aligned}$	8	10	Hot	500	116	5	47	100

Number of persons composing the decoy (Column 7) was varied between $j_{1} 2,3,4$, and (seldom) 10. The trail biock averages come out to 1,2 and 10. This does not seem to be a significant factor. In about 10\% of the problems the dog passes the decoy entirely and gives no alert. These situations are usually where a wind bearing is from the dog to the decoy. In May and June, Nero made 32 such errors. Caesar made 21.

In the later work, length of probless (Colum 11) and degree of concesiment (Column 13) were not significant iactors in predictIng success. Since by the judgement of the handler the animal seems to work totaliy on smell (Column 18) visuel concealment doesn't mean anything.

For Caesar (Table 3), the mean final distance to the decoy is 150.2 yards for May and June while the mean distance fram the dog to the decoy at the time of the alert is 70.0 yards, Aeain, this 80 exira yards of safcty for the handler is the crucial difference between the free-ranging and scout dog reconnaissance systems. Caesar was worked on a leash extonsively in eariy training and occesionaliy later on. These 30 problems with the leash in May (see Table 3) contribute to levering the margin of safety expressed above as 80 yards. On these trials Caesar provides only the protection of a scout dog. Two gereral conclusions are indicated by these tests.

1) The system way be worked with or without a leash.
2) The dog-decoy distance is not effected by the leash factor.

2703ics 3
CAESAR'S PERMORMANCE IN TWO MOHTHS TRAXHLKG

DOG - CAESAR

号		$\begin{aligned} & 7 \\ & \frac{7}{6} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 6 \end{aligned}$						
1	E	7	10	11	12	13	14	18
$\begin{aligned} & \text { April } 2 \\ & -4 \end{aligned}$	2	2	Cool	300	110	2	$\begin{aligned} & \text { (1eash) } \\ & 110 \\ & \hline \end{aligned}$	100
$\begin{gathered} \text { April } 4 \\ -5 \\ \hline \end{gathered}$	1	1	Cool	300	110	4	$\begin{aligned} & \text { (leash) } \\ & 110 \\ & \hline \end{aligned}$	100
$\left[\begin{array}{c} \text { April } 5 \\ -7 \end{array}\right.$	0	1	6301	600	45	3	$\begin{aligned} & \text { (leash) } \\ & 45 \end{aligned}$	100
$\begin{aligned} & \text { April } 7 \\ & -9 \\ & \hline \end{aligned}$	0	3	Cool.	630	15	2	$\begin{aligned} & \text { (1eash) } \\ & 75 \\ & \hline \end{aligned}$	100
$\begin{array}{r} \text { April } 9 \\ -10 \\ \hline \end{array}$	2	2	CoOl	480	96	2	(leash) 96	100
$\left[\begin{array}{l} \text { April } 10 \\ -13 \end{array}\right.$	1	2	Cool	300	60	2	$\begin{aligned} & \text { (leash) } \\ & 60 \end{aligned}$	100
$\left\{\begin{array}{l} \text { April } 13 \\ -{ }^{5} \end{array}\right.$	0	1	Cool	450	210	5	$\begin{aligned} & \text { (1eash) } \\ & 110 \\ & \hline \end{aligned}$	100
$\begin{aligned} & \text { April } 15 \\ & -\quad 19 \end{aligned}$	2	1	Cool	600	120	4	$\begin{aligned} & \text { (leash) } \\ & 120 \\ & \hline \end{aligned}$	100
$\begin{array}{\|} \text { April } 19 \\ -20 \\ \hline \end{array}$	0	1	CoOl	315	180	3	$\begin{aligned} & \text { (leash) } \\ & 180 \\ & \hline \end{aligned}$	100
$\begin{array}{r} \text { April } 20 \\ -\quad 33 \\ \hline \end{array}$	1	1	Hexm	225	150	3	$\begin{aligned} & \text { (leash) } \\ & 150 \\ & \hline \end{aligned}$	100

TABLE 3-CONTIMUED

DOG - E.ESAR

¢		$\begin{aligned} & \frac{7}{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				$\overline{3}$ 0 		
1	6	1	10	11	12	13	14	18
$\left[\begin{array}{l} \text { April } 23 \\ -25 \end{array}\right.$	1	2	Harm	300	56	2	$\begin{aligned} & \text { (leash) } \\ & 56 \\ & \hline \end{aligned}$	100
$\begin{aligned} & \text { April } 25 \\ & -26 \\ & \hline \end{aligned}$	1	1.	Harm	360	150	3	$\begin{aligned} & \text { (leash) } \\ & 150 \\ & \hline \end{aligned}$	100
$\begin{aligned} & \text { April } 26 \\ & -27 \\ & \hline \end{aligned}$	1	1	Warm	180	45	3	$\begin{aligned} & \text { (̌eash) } \\ & 45 \\ & \hline \end{aligned}$	100
$\left[\begin{array}{l} \text { April } 27 \\ -29 \end{array}\right.$	1	1	CoOl	360	60	3	$\begin{aligned} & \text { (!eash) } \\ & 60 \quad \ldots \end{aligned}$	100
$\left[\begin{array}{l} \text { April } 29 \\ -30 \\ \hline \end{array}\right.$	1	1	Harm	460	30	2	$\begin{aligned} & \text { (leash) } \\ & -30 \\ & \hline \end{aligned}$	100
$\begin{gathered} \text { April } 30 \\ - \text { Mey } 3 \end{gathered}$	1	2	Warm	310	168	4	30	100
$\begin{gathered} \text { hay } 4 \\ -5 \\ \hline \end{gathered}$	1	2	Hot	200	27	5	47	100
$\begin{gathered} \text { Mas } 5 \\ -6 \end{gathered}$	0	2	Hot	240	81	$\stackrel{1}{4}$	60	100
$\begin{array}{r} \text { Way } 6 \\ -10 \end{array}$	0	2	Rain	160	40	4	$\begin{aligned} & \text { (leash) } \\ & 40 \\ & \hline \end{aligned}$	100
$\left[\begin{array}{l} 10 \\ -13 \end{array}\right.$	1	1	Cool	210	122	5	62	100

table ? - contimued

DOG - CAESAR

$\stackrel{3}{3}$		2 0 0 0 0 0 0 0 0	-					
1	6	7	10	11	12	13	14	18
$\begin{gathered} 13 \\ -14 \\ \hline \end{gathered}$	2	1	Cool	340	165	5	(leagh) 165	100
$\begin{array}{r} 14 \\ \hline \end{array}$	0	1	Cool	320	69	5	(1eash) 69	100
$\left[\begin{array}{c} 17 \\ -18 \end{array}\right.$	0	1	Cool	588	174	5	72	100
$\begin{aligned} & \text { May } 18 \\ & -20 \\ & \hline \end{aligned}$	0	1	Warm	600	150	5	$\begin{aligned} & \text { (1eash) } \\ & 150 \\ & \hline \end{aligned}$	100
$\begin{aligned} & \text { May } 21 \\ & -23 \end{aligned}$	0	1	CoOl	660	32	5	(leash) 32	100
$\begin{gathered} \text { May } 24 \\ -25 \\ \hline \end{gathered}$	0	1	Hot	660	66	5	(1eash) 66	100
$\begin{gathered} \text { May } 2.5 \\ -26 \end{gathered}$	0	1	Hot	630	69	4	42	100
$\begin{gathered} \text { May } 27 \\ -\quad 28 \\ \hline \end{gathered}$	0	1	Hot	825	180	5	123	100
$\begin{aligned} & \text { May } 28 \\ & -31 \\ & \hline \end{aligned}$	0	1	Hot	600	186	4	110	100
May 31 $\text { - June } 1$	0	1	Cool	630	144	4	90	100

tabile j - comithued

DOG - CAESAR

$\frac{8}{9}$		$\begin{aligned} & 7 \\ & 0 \\ & 0 \\ & 0 \\ & \mathbf{6} \\ & \frac{0}{6} \\ & \hline 6 \end{aligned}$	$\begin{aligned} & \underset{0}{\mathbf{0}} \\ & \frac{9}{\frac{9}{0}} \\ & \underset{\sim}{0} \end{aligned}$			5 \vdots 0 0 0 0 0 0 $\frac{8}{8}$ $\frac{8}{7}$		
i	6	7	10	13	12	13	14	18
$\left\lvert\, \begin{aligned} & \text { June 2 } \\ & -4 \end{aligned}\right.$	0	1	CoOl	555	63	5	36	100
June 4	0	1	CoOl	810	342	4	84	100
June 7	1	1	Cool	510	186	5	153	100
June 9	0	2	not	690	156	5	54	100
Tune 10	0	1	Warm	540	138	4	42	100
$\begin{aligned} & \text { June } 10 \\ & -11 \\ & \hline \end{aligned}$	0	1	Harm	870	510	4	54	100
$\begin{aligned} & \text { June } 11 \\ & -14 \end{aligned}$	0	1	Warm	390	165	5	60	100
$\begin{aligned} & \text { June } 14 \\ & -15 \\ & \hline \end{aligned}$	0	2	Harm	660	225	3	60	100
Tune 15	2	1	Cool	630	156	5	66	100
June 16	0	1	Cool	555	159	5	12	100
June 17	1	1	Rein	660	138	4	30	100
June 18	2	1	CoOl	875	174	4	60	100
June 21	0	12	Hot	320	72	5	24	100

TABLE 3 - COITITUED
DCG - CAESAR

$\frac{8}{6}$		$\begin{aligned} & z \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \frac{k}{6} \\ & \frac{9}{7} \end{aligned}$					
1	6		10	11	12	13	14	18
June 21	0	2	Hot	600	185	4	66	100
June 22	0	1	Hot	1000	150	4	45	100

B. Exercise for an invited audience.

On Jume 23 and 24, 1965 a demonstration was frenented for observation and evaluation by oppicials of the Lisited War Labaratory, Aberdeen Proving Ground, Maryland, and other invited guests.

The two German Shepards (Cuesar and Ne)), each twenty four months old, were the dogs used. Both had undergone approximately fi.ve months of training under the direction of the Canine Behavior Laboratory. The training had advanced the dogs through stages of traditional onleash wcouting to intermittent periods of in-range off-leash scouting (allowing for close verbal control), to the ultimate stages of independent isolated reconnaissance.

In order to reliably assess the overall potential of the prom gram in field use, an aroa at Fort Meade, Maryland, was used and approximated as realisticaily as possible the conditions to which the dog might be subjected if in operational use. The conditions included well defined roadways, open field areas, and obscure pathyays and trails leading through dense underbrush in heavily forested areas.

Attending personnel were divided into the ambush and patrol. To further facilitate an evaluation, observers occesionally joined the ambush party. Members of the patrol included the predesignated patrol leader, the handier and observers. The patrol leader determined the route the patrol followed and the ambuah was set up at a point along that route unknown to the handier or the rest of the patrol. In most situations the ambuah was situated along side the route ten to thirty yards from the trail spraad out along twenty to ninety yards of the
 an alert. This information was used for identifying the general area of the ambush, and then the actual position of the ambush was noted. In evaluating the validity of the alert given by the dog, all relative information was compiled and assessed. Most important of these factors was the direction of the wind and the velocity of the wind measurea in inots. Other data considered were the temperature, bumidity, distance From dog to ambush, density of vegetation, etc.

Each trial was prearranged to exploit the performance of the dog under many diverse situations such as path junctions, inaminate objects (motor vehicies, etc.), routes with almost no identiriable course, and open rields.

Problems with the above situations are illustrated in Fig. 3. Some explanation of the significance of each of these problems is necessary:

1. Path junctions occurred along the routes in problems 4-6, Nero, and 2, 4, 5, Caesar.
2. In an attempt to test whether or not certain objects along the route would elicit a response from the dog, two problems were arranged with the following conditions: near the end of Problen 1 of Nero!s performance, ruins of an old house were present but froduced no alert; also, on Problem 4 of Ceesar's performance an Army vehicle gituated to the right of the route elicited no alert.

3. In order to determine the necessity of having a natural pathway for the dog to follow, Problem 6 - Nero, and 5 - Caesar, began with a oleariy defined path wifich, arter appr mimately 400 yards, grew less aiscernable due to a large overgrowth of follage. Both dogs continued along the intended route with no indicated conpusion.
4. Problem 4, Caesar, the illustration indicates a problem routed across an open field with the ambush party separam ted into two units. A first alert was given midway across the field.
5. To te t the rellability of the handler's detection of an alert on the sole basis of the tonal characteristics, one trial was performed without an ambush (Problem 6, Nero). However, a realistic evaluation of the situation was hindered because e small encampment of soldiers, unaware of the test, hed provided a stimulus on which the dog may have given these false alerts.

The significance of the humidity and temperature was evaluated. The first day of the exercise, June 23 , both dogs were tested with the temperature ranging from $85-95^{\circ} \mathrm{F}$. (Problems 1, 2, 3, 4 - Nero and 2, 2, 3 - Coesar). The utility of the dog seems to be significantly limited under these temperature extremes. His performance and general enthusiasm is markedly reduced; however, his response to an ambush
neems to zamain efficiet. :
From thase exercises at Fort Meade, the following considerations vere expressed by various persone involved in or observing the performance of the canine reconnaissance systra:

1) The distance from the handler to the free-sanging log is the irucial divantage of the system over a reguiar scout dog. It generelly provides better protection and a longer warning to the handler and the patrod. Aiso, when the wind is bearing anywhere behind the patrol the ireeranging dog may still give warning. This distance must be emphesized an increased.
2) The radio sigaal system nust be more "readable". We have discussed some of these measures. (Since remedied by the anklet position of the motion transducer.)
C. The ten-Cay test program.

Incorporating the results of the experience and discussion of the exercise at Fort Meade, a ter-day test program was initiated in the final days of the contract. The purpose of this test was to provide a final evaluation of the level of performance of the aystem with the most relevant measures of the characteristics of the problem recorded. Three dogs were used in these tests. Caesar and Nero vere the dogs used in the exercises described in the previous sections and, the third dog, Siugger, was a fine scout dog trained by the 26th Scout

Dog Platoon. The purpoge of innluaing this dog was to determine the efficiency with which a scout Dog could perform ireemranging reconnatssance and to produce a comparison between acout and free-ranging reconnaissance, He vas, therefore, trained for four weeks using the comand "STAY" when the hander perceived the dog to be alerting. During the ten-day teat, this acg was worked both on and off-leash (as was Nero) but always required to "STAY" on the alert.

Figure 4 illustrates Nero's performance during thege test days. The reader will note tiat on days 2 and 6 anae trials were mun "or-leash". No significant change occurs under the circumstances as far as the wernIng the dog allows for hingelf; however, the hander is at "FA" and not remped to a safer position as in other trials. The advantege of this point are most drametically illustrated on trial 1, day $1 ; t_{\text {" }}$ ial 2, day 2; trial 3, day 5 and trial 2, day 8 . On these problems the dog has entered or is beyond the ambush area before giving an alert. However, since the dog is free-ranging ahead of the handler, the handler is warned in time. These characteristics are most likely when there is no wind or an unfavorable wind.

Caesar's performance (Fig. 5) illustrates similar phenomens (see trial 2, day 1; trial 2, day 2; trial 2, day 6; trial 1, day 7 and trial 1, day 8). The three longest trials for Caesar are well uver 1,000 yards and this length is indicated by the broken line in those cases. The reader will note that in these light wind conditions, the wind bearing does not always predict where the alert will be. Disruptions in the wind flow by terrain and follage may account for ame of the discrepancy, but nost of the scent borra to the dog is probebly

by general diffusion of it in the ambush area. The performance of Slugger (Fig. 6) was prodominately "on-leash" but the "staymalert" is used. The fact that Slugger never entered an ambusin area during the ten-day test is impressive. This may be due to the close supervision from the closely following handler, or it may be that he is Just a better performer. In any case, the data suggesi (as do those of (lero) that the "staymalert" can be used with dogs working boin on and off-leash.

PART IV. CONCLUSIOMS AND RECOMARTDATIONS.

As has baen indicated threughout tinis report, it is felt that the data suggest that incorporgtion oi some or the techniquas of the Pray-ranging aystem into the procedures for scout dog training would proilde a greater warning and margin of afety for the foot patrol. Tais margin becones more and more evident as the wind conditions become less Iavorable.

The accompenyiug field manual (Appexdix B) has been forwarded to the 26 th Scout Dog Platoon as a suggestion which may be utilized in their revision of the FM $20-20$ now going on. This embraces the exact recomendation of the author. That is, that these procedures be riewed as an addilition to procedures now oparational. The purpose would be to allow the scout dog. more flexibility on a greater variety of military problems. Certainly the logisifical problems indicated by such e reconnaissance system are nore than fustified when effective performance such as indicated in the Tables add Figures of Part III is possible.

The system described in this report is 90% effective in prom viding adequate warning of the presence of enemy personnel so that the patrol would be protected from an ambush consisting of small arms fire. Its advantage over the present bystem is in protecting the operating personnel by about 200 yards of trail length. The suggested addition of personsel and equipment (over that now used to operate the scout dog) is merely the adaition of the transmitter and motion transducer (see Fig. 2) if standard Army radio comunication equipment ($38-55 \mathrm{Mmz}$) is available. The additional training procedurer necessary (see Appenaix
 Dos training schedule.

The iimitations of the system are as experienced by the scout Dog system with a few exceptions:

1) Under heavy rain the retuin whistle cannot be heard and the dos will not return from the alert.
2) When a trail or pathway is not available, the dog must be worked on a leash. If he is not, his direction of search may vary from the direction of the patrol.
3) In heavy vegetation the reliability of the transmitter is limited to 250 yards. If the dog is in advance of more than this distance at the time of the alert, the landiar will not be aware of the alert until he has closed to approximately that distance. However, he will be aware of the possibility of an unknown alert since he will be getting no tone (neither steady nor "broken") Prom his receiver and will realize that he is out of range of the dog's transmitter.

Further posaible applications of the system have already been suggested and it is the recomendation of the author that these be further explored in discussion. These include uses of other alert stimuli rather than personnel, such as fence breaks, wire commication breaks and supply dumps. However, when considering other possible alert stimuli, the dog's visual limitations should be kept in mind (see page 5 and 6 of thia report). It may be true that a moving visual stimulus
may be more easily discriminated by the dos, but the evidence is no more than heresay. In patrolling a fence for break: a dog could be kept close to the fence line ans bie Fision would probsbly be adequate in daylight hourt.

The most promising expansion of the use of the system world be to train the alert to other alert etimuli which wre still olfactory in nature. Human artifact when handled for extended periods by men holds scent very well, especially if the material is poroup such as wooden crates. Therefore, the search problem of looking for caches of weapons, ammition or other supplies seems the most feasible. The free-ranging dog would have an advantage over the leashed dog in that the handier would not be required to cover all the area that the dog would in his search. The disadvantage is in the extent of position control which could be exercised over the dog. Attempts at position control in the free-ranging system were eliminated by focusing the efforts of this coarract on problems with trails, paths or roads as guides for the dog. However, as the 26th gcout Dog Platoon parsonnel have pointed out, hend signals can be used effectively in positioning and moving the dog. The evaluation of the difficulty of training such a dos would need to be accomplished by those in the Army knowiedgeable of the need.

APPENDIX A

TRAINING DOGS FOR FIELD

RECONNAISSANCE

INTERIM REPORT

Wendell H. Niemann and Melvin L. Kreithen

Canine Behovior Laboratory
University of Maryland
College Park, Maryland

Prepared for the U.S. Army Limited War Laboratory
Aberdeen Proving Ground, Maryland under
Contract DA 18-001-AMC-260(X)

Juiy 1964

TABLE OF CONTENTS
Page
INTRODUCTION 1
Methodology 2
MATERIALS AND METHODS 3
Training apparatus 4
Training methods 7
DISCLSSION 14
SUMMARY 16
LITERATURE CITED 16
VHF Radio Command System 17
Physiological Telemetry Studies 23
Sources of Supply 28

1. INTRODUCTION

Currently a principal military use of dogs is to maintain security of fixed installations. In this situation the dogs work on a short leash, under direct verbal control of a handler. Dogs are selecied for this use on the basis of their aggressive tendencies. The functions of sentry dogs are to warn the handler of intrusion and to counter attempted escrea. Dogs used for reconnaissance, on the other hand, should, ideally, be released to range freely, and should be capable of functioning in perceptual isolation from the handler. When used in this way a dog should also be capable of trunsmitting an alerting signal to its handler. The stimulus that elicits the alenting signal must ba a consistently detectable component of the field situation. An assumption basic to the rationale of the present study is that human beings are a constant c.smponent of the kind of field situation that would be of primary tactical significance in potential operational applications. Other components of field situations may be variable or require excessively precise discrimination for the purpose of this study.

The various tasks required of a dog on a reconnaisance mission can be defined as follows:
A. Leave the handler on command, in a direction indicated upo 1 release;
B. Search for people, hidden and/or camouflaged in varying degree;
C. Signal when one or more people have been located;
D. Return to the handier.

It is assumed that the recornaissance dog will operate with dismounted personnel.
The task sequence outlined above is complex. Analogous tasks, however, are accomplished by several breeds of working dogs, particularly by hunting and herding dugs. Admittedly, the functions of working dogs are different from those of a reconnaissance dog. In all instances, however, working breeds have been developed to perform functions of varying complexity at some distance from the handler on the basis of simple auditory or visual cues. These often difficult tasks may be completed out of sight of the handler.

The results obtained in the present study demonstrate the feasibility of using dogs to reconnoiter in free ranging for the purpose of detecting people in hiding. The training methods developed in this study are readily adaptable to the requirements for large-scale training procedures to produce reliable reconnaissance performance in any desired number of dogs.

Mathodolony

Behavioral analysis. Modern behavioral analysis provides a methodolagy to achieve a hitherto unatiginable degree of experimental control over animal behavior in the laboratory. 2 This methodology has been exploited to produce dramatic performance in many different species in applied situations. ${ }^{3}$ The methodology is often referred to as operant conditioning, or instrumental behavior analysis.

Behavioral analysis deals with observable responses of an organism, the effects of the responses on the environment, and the consequences to the organism of these environmental changes. The principal datum of interest in the application of operant conditioning techniques is the frequency of accurrence of an acquired response, or of sequences of responses, as a function of (1) consequences of the specified behavior, and (2) the stimulus conditions under which the resjonse is made.

Consequences of behavior. The consequences of behavior may occur "naturally" in the environment, e.g., a dag trailing a rabbit - catching and eating the rabbit are terminal consequences of the tracking behavior. In the laboratory the consequences of behavior may be explicitly programmed by an experimenter and mediated by appropriate apparatus. Thus, for example, a rat may be trained to operate a lever-action switch by the programmed delivery of food pellets when a specified lever-operation requirement is met. The consequences of behavior may be positive or negative.

Positive consequences, or reinforcements, increase the likelihood of further occurrences of the preceding behoviors. In lay terms, reinforcing events are called rewards. Negative consequences are those events which, when presented, decrease the likelihood of occurrence of the preceding behaviors. These events are called punishment in both technical and lay vocabularies,

Reinforcements are of two kinds, also termed positive and regative. Positive reinforcements are those consequences which enhance behavior when they are presented following the response. Thus, food, water, sex, money, praise, etc., are examples of positive reinforcers. Reinforcing a response increases the number of responses made in a given unit of time, or the response rate. Conversely, extinction, i.e., non-reinforcement of a response, tends to reduce the probability that a response will occur. Negative reinforcements (not to be confused with negative consequences) are those consequences which enhance behavior when they are withdrawn following the response, for example, painful stimuli, verbal abuse, or other stimuli associated with the absence of positive reinforcement.

Aversive stimuli may be used to facilitate learning and performance in three ways; (1) an animal is taught not to make an undesirable response by applying an aversive stimulus after each occurrence of the unwanted response (punishment); (2) an animal is taught to make a responser by applying an aversive stimulus until the desired response occurs (escape learning); (3) an animal is taught to make a certain response under threat of receiving an aversive stimulus (avoidance learning). The difference between negative reinforcement and punishment is in the function, not the kind of event. For example, prinful stimulation is a nagative reinforcer when its removal is contingent upon the uccurrence of a desired response, and it is a punist:ment when its presentation is contingent upon the occurrence of the response. In general, in the latter case, the response is produced by the withdrawal of n stimulus, whereas in positive roinforcement, a response is produced by presentation of the stimulus.

The use of aversive stimuli can be very effective, but it may also produce undesired side effects. In a complex situation, punishment for ir orrect responses may suppress all responses. Negative consequences frequently tend to arouse emetional responses (conditioned emotional responses) which are incompatible with performance of a wide range of behaviors.

Stimulus control. Stimulus control is acquired through the differential presentation of positive and negative consequences in the presence of previously neutral (not specifically conditioned) stimuli. Initially the stimulus acquires positive conditioned reinforcement properties by simultaneous presentakion with food or some other reinforcer or negative properties by pairing with a negative reinforcement. The response, previously trained, can be brought under stimulus control by reinforcing all appropriate activity during the period the stimulus is presented. When the stimulus is withdrawn, the absence or a response, either correct or incorrect, may be rewarded. Thus, an animal learns to respond when the stimulus is presented and not to respond when the stimulus is withdrawn after a period of training or experience in the training situation. When this occurs the response is said to be under stimulus control. The subject has learned to differentiate (discriminate) between the presence or the absence of the previously meaningless stimulus, and to respond appropriately. This rationale was applied in the present training situation. In accomplishing the reconnaissance function, the object of the dogs' seaich must be a stimulus that is sufficiently powerful to elicit the required "information response" in the field.

II. MATERIALS AND METHODS

Five pairs of normal male dogs were initially purchased. They were Labrador Retrievers, German Shepherds, Beagles, Blue Tick Coon Mourds
and mongrels (mixad breeds). Where possible, American Kennei Clu's registration was required to obtain genotypes as homogeneous as possible. Supply sources for dogs and other materials used in this study are listed in Appendix C.

Labrador Retrievers are hunfing or gun dogs, German Shepherds are herding dogs and the Beagles and Coon Hounds are trailing or ground scenting dogs. The mongrels were used to assay the effects of variable and largely unknown genetic mixtures. The dogs purchased represent a small sample of animals available through normal commercial channels. No attempt was made to select dags on the basis of any criteria other than breed, sex and age.

Young adults (one year of age) were necessary in order that the weight of the equipment could be carried without undue discornfort. Previous history of training was available only on the Retrievers. This training was in basic obedience (come, sit, stay, heel) and rucimentary Retriever training (fetching a thrown cloth dummy). Retained p.irformance of these tasks at the laboratory was poor when tested. This is not to say that the dogs had not learned the commands only that the commands when given by a complete stranger elicited no response from the subjects. All other dogs tested in a similar manner for possible training reacted in the same way to the commonly used verbal conmands. Typically, the response consisted of inattention to the command. It was assumed that all of the dogs were essentially naive in the laboratory setting.

The dogs were found healthy and were given routine prophylaxis ugainst pneumonia and internal parasites. They were allowed to adjust to the new sifuation and diet for one week prior to being placed in the training situation.

Housing for the animals was provided by 50-gallon steel drums with one end removed, mounted horizontally on a two-inch pipe sunk in the ground. The pipe projected 18 inches to 2 feet above the ground. A 6-foot chain with a loop arcond the pipe allowed the dogs a circular run of approximately 100 square feet. A canvas flap was fastened to the open end of the barrel.

The dogs were maintained on a commercial dog food (Purira) and a milk concentrate powder (Red Rose). This diet supplemented food received in the training situation.

Training apparatus

Command syste'n. It is necessary to cue or present stimuli to the dog to indicate that a change in behavior is required. Some means, therefore, of reliably presenting a cue to the dog wes needed. Since the subjects wuuld ultimately be out of sight and hearing, a radio transmitter was selfected that
would enable the handler to broadeast several radio signals. A dog-bome unit was devised to receive and convert radio signals into audible cuos (commands) through a speaker. Because the dogs' unit must also transmit a signal to the handler when the search object has been found, a dual transmitter and receiver was provided. A complete description of the radio units is presented in Appendix A.

Harness and pack. The dog-borne components of the radio system were carried by the dogs in a canvas saddle bag strapped to a harness which was secured to the animals by buckles and straps.

Stimulus object. A wooden cube, one foot on a side, painted black, was selected as the stimulus or search object. The box was tested for neutrality by placing it in an open field and allowing the dags to approach it in a free choice situation. The dogs investigated the box, but the time spent near it was no more and no less than time spent investigating other objects in the ervironment. This behavior strongly suggested that the box was free of positive or negative associations and that the dogs had no previous training with objects of similar physical properties.

Human beings were not used as search objects early in the program because of the conditioned reinforcement properties they have assumed in the dogs' history.

The box was, therefore, chosen as a reasonable stimulus which would serve as the search object in the experimental training program. Later studies proved that the transfer to the human figure presented no special problems.

Observation of the dogs' activity in the field suggested the large role olfaction plays in locating an object. Characteristic odors appear to be relied upon when vegctation and terrain complexities and distance preclude direct observation and straight line approach to the object of search.

An arbitrary scent was added to the box to assist the dog in locating or restricting his search to an area where the ador was most concentrated. Originally, oil of wintergreen was used to "labe!" the object, but use in the field indicated that the potency or concentration of this scent was too quickly dissipated. Oil of anise was substituted and found to be satisfactory - adequate potency was maintained for a full two hours and a residual odor was detectable at 2 feet for as long as 3 days.

Information response mechanism. The utilisy of a scout dog would be increased if there were some reliable method of obtaining information from the dog during! eriods of visual and auditory contact loss. Previously mentioned has been the general task outhiue, and the use of radio transmitters to broadcast information to and from the dog. Conceivably the dog could be
trained to make a switch closure in proximity to the search object which would activate the transmifter.

A number of devices were examined for possible use as a transmitter aciivating switch.

A review of various movements that a dog is capable of making was first undertaken. These movements were evaluated with respect to their possible utility in being adapted to operate a switch mechanism. The movements that were evaluated included tail wagging, scratching with the rear limbs, head turning or head lowering, powing with the forelimb, biting, pushing with the nose, barking and sitting motionless. The premise was that any of these movements could be used, with a suitable intervening mechanical or electrical device, to activate the transmitter.

There were limitations placed upon the response chosen. First, it had to be sufficiently general so that any dog chosen was capable of initiating and completing the act with sufficient force to be ultimately converted by the transmitter into a detectable signal.

Second, the response could not occur with a significant prabability prior to training. It had to be sufficiently unique so that when the signal was received by the handler there would be a high degree of assurance that this was not accidental. Sitting motioniess and tail wagging are examples of responses which could occur in the field under a variety of conditions. These would give false positive reports and, therefore, could not be utilized.

Switch mechanisms. The choice of dog signal relay system (radio transmission) required an electrical change of sufficient strength to be converted to a transmiftable signal. The signal could be generated by the response acting directly on electrical contacts or initiated by an intervening mechanical device.

A review of possible switch mechanisms inciuded push buttons, lever action microswitches, accelerometers (steel bail falling in a viscous fluid) mercury switch, magnetic reed switches, carbon granules (compression causing decreased resistance), metal plate contact and stable oscillation interruption.

The mechenism chosen had to be waterproof, and it could not fail because of mechanical jamming by vegetation. Small size was desirable to preclude snagging, and preferably the switch would be easy to attach and remove from the dogs.

The location of the switch on the animal would be determined by the response chosen. The switch had to be adaptable to the part of the anatomy used by the dnima! to make the sesponse. The switch could not be mounted on the animal in a way that would be in any way detrimanial to the animal's locomotion.

Bite response. A bite response was chosen for its low probability of occurrence in the field, high degree of generality in all dogs and a dogs' ability ta teach the greatest portion of its anatomy with its mouth. The switch was a camera shutter release bulb drivirg a plunger which closed a microswitch. The pressure required to activate the plunger-microswitch device was four ounces. The bulb-planger-microswitch apparatus was originally located in the flank region. The bulb bite respense, the buib switch mechanism and the location of the switch were changed during the training period when difficulties arose. These will be discuss: ${ }^{2}$ under Training Methods.

Training Nethods

The methodology of modern behavioral science has been discussed. The techniques require the use of a reward or reiliorcement presentation following each desired response. Throughout the training period food was used as the primary reinforcer. Two factors affected the level of motivation in the training sessior. The primary iactor was the number of hours of food deprivation. The second factor was change in the character of the reinforcer. This was mest obvious when a change was made from dried food to a canned preparation.

Food deprivation. The original deprivation schedule used was based on 80% of ad libitum weight. This proved too stringent for animals housed outdaors and one animal died from complications believed to be associated with this amount of weight loss. The problem of sufficient motivation was cimpromised by the general state of health of the animal. Shorter sessions (íewer trials per day) were accepted in order that adequate levels of nutrition could be maintained. Twenty-four hours of food deprivation were insufficient to develop a satisfactory levei of motivation, though a short (5-10 trial) session could be obtained. Thirty-six to forty-eight hours generally permitted a sufficient number of trials $(20-30)$. Allowing the dog to work to satiation in this period resulted in lowered performance on the next day, but a retum to high performance the second day. This level of deprivation was adequate for most situations, but occasional periods as lang as 96 hours were necessary to correct a persistant fault or to train a difficult task. It should be emphasized that this level of deprivation (approximately 48 hours) is necessary only during the introduction and early repetition of a new sask. Once the task is leamed, 24 hours deprivation gave adequate performance,
 Gainsburger, canned mackeral, row hamburger, canned horse meat, cooked liver, milk and Gaines Meal were used at various times during the training period. The most consistently reinforcing food was the canned horse meat, Gainsburgers were al most as palatable and had the additional advaniage of being less trouble to dispense. All other food showed some novel effect but then decreased in strength. The results of quantitative changes in reward were inconclusive. In general the reinforcements were kept small in size (2-4 oz.) in order to maximize the number of trials per session.

Obedience training. Traditional methods of dog trairing were used to establish-obedience. Simple yertal commands such as sit, heel, come, stay, were taught to four of the dogs. Training was accomplished by means of a choke collar. Failure to respond or an improper response was followed by a sharp fug on the leash (punistment, and later, avoidance); correct responding was rewarded by petting and vocal expressions of encouragement.

Verbal control was obtained over four of the dogs to some degree. The verbal controi was of some use in the training procedure. Frequently this use was a convenience; e.g., sit and stay command given prior to buckling on the harness or heef command when taking the subject to and from the kennel to the training area. The command "come" was paired (simultaneous presentation) with the return torie in one phase of the training. The return tone gradually replaced the verbal command "come" by the process of pairing and incremental decrease in the loudness of the spoken word "come" (fading).

Retriever training. Retriever troining is an extension of abedience training. Auditory and visual cue control become established over increased distances. The dog learns to complete increasingly complex tasks over distances of 100 yards or more. Behavior is maintained through a system of positively associated words (good dog, etc.) and negatively associated words (no, bad dog, etc.) and punishment. The main tasik, retrieving a thrown canvas boat fender, is made increasingly difficult until hand signals and a series of whistles are required to convey infomation to the dog over long distances. Starting, stopping, and left and right directions are given by these methods to confine the dogs search to a smali area near the dummy.

Directional control is achieved eventually by arranging the training situation into easily completed tasks with an arm signal to indicate the bearing to the dui.my. The dog will learn to take a straight line to considerable distances and with practice circumnavigate cbstacles in the terrain and resume the line on the other side.

Reconnaissance Training. The critical difference between the retriever task and the proposed reconnaissance dog task is that the handler has foreknowledge of the location of the search object in the retriever tosk. Originally, it was thought desirable to have strict directional control over the dog to place him accurately in an area of possible stimulus concealment. Tests of the handler's ability accurately to predict the location of the search object in a linited environinent (a one acre enclosure), however, gave results that were no better than could have been achieved by random searching. On the other hand, it is recognized that in other fieid situations there may well occur terrain features that would represent preferential sites for concealment of people, and that these might be identified by experienced personnel.

After consideration of the various factors involved in this problem, it was decided not to attempt to develop strict placement control of the dogs, at least in the original program. If it is assumed that the handier cannot reliably predict the most probable location of hidden people in a field situation (and if he could there might be no requirement for dogs!), then it is completely valid to attempt to establish a generalized search pattern. This could mean, in effect, that the dogs are allowed to establish their own patterns, once they learn whas they are supposed to do when relecsed. In practice, the dogs readily developed a "casting" technique, in which they searched back and forth along a swath of varying width and length.

The various stages in reconnaisfance training was described below.
a. Release and return. The first phase of training was to arrange a situation which would encourage the dog to leave the handler and traval some arbitrary distance from the trainer and return under tonal control. This series of experiments explored the possibility of controlling the direction and distance of a dog's renning, fulfilling the first and fourth components of the complete task.

- The dog was familiarized with the availability of food at a mechanical feeder by allowing him to eat at the site several times. The sound of a tone at the same time or briefly before food was made available at the feeder, conditioned the dog to go to the feeder at the onset of the tone. Later, when the dog is out in the field this tone will cue him to return to the base because his previous experience in the presence of this tone means a reward is available.

A steel wire was strung between two trees, about 50 feet apart, and 5 feet above the ground. The magazine and food pan were locoted ot one end of the wire and the dog's leash was loosely connected to the wire. Excursion

along the length of the wire was allowed, but lateral deviations were iimited by the leash. A tone was initiated and any movement away from the handler or base caused the onset of a different tone which wos ascociated by previous magazine trainirg with food. The distance traveled on the wise was grodurlly increased until full length excursion of the wire was schieved. Four dogs were subjected to this procedure and all showed difficulty in leaming the task. Only ore dog of the four tested gained sufficient level of performance to be released from the wire. An atfempt was made to correct errors of premature returning by the use of a shock collar in this phase of training. The side effects of punishment became apparent in three dogs subjected to shock, faking the form of cowering or violent attempts to escape.

An altemative procedure was next followed. Four dogs were trained to pick up and then retrieve a thrown object, returning it to the thandler. When this was well learned the box was substituted for the thrown object and by appropriate pairing, tones sere introduced to replace the hand and whistle signals used initially. This method was effective in teaching or inducing the subjects to apprcach the bow. The time necessary to teach first the retriever fask and then the transfer to the box, made this training method excessively long.

A third fechnique proved more successful. Dogs were troined to approuch the box (search object) by boiting it with small portions of food. Two tones were broadcast: the first while the dogs approached the box and the second after the dags had reached the box. The second tone was the one previously saught during food magazine training and hence it came to function as a retum signal.

The initial distances to the box were short ($3-6$ feet). The box was gradually moved further away and the baiting was decreased in frequency. Distances of 60 yards were achieved with this method and searching behavior was evident when the box was hidden. The direct box traisting with intermita tent baiting as the performance improved, oppeared to be the fastest and most reliable method of training the animal to seek out the box.
b. Information response. The general problem of selecting on information response has been discussed. A pneunotic camera shutter release mechanism driving a microswitch wos developed for use in the field. A series of training procedures to teach not only responding but responding in the presence of the search object was devised, The previous training experience was used as n foundarion for more complex behevior wherever possible.

A number of techniques were tried and discanded in an attempt to traitı and maintain bulb bifing behavior. Six techniques were tried; retriever
training, elusion or teasing, restraining hox, direct chaping, plostic squeeze toy, and a milt-soaked sponge containing electrodes. All these methods were used to induce biting on object with sufficient presture to close the microswitch. The pressure required to close the microswitch was 4 ounces. Consistent closure was achieved it, onl; 3 of 10 dogs after training periods up to 3 montho. An additional difficulty with the bite responce wos that the distance to the box became a critical factor in the emistion of the bulb bite; i.e., the greater the distance to the box, the lower the probobility of the responie occurring.

As an alterative to the bite response, the microswitch closure mechanism was modified to function upon pulling a flexible wire attachment. Although the two responses are similar, the pull response proved easier to train, and much easier to maintain. The dog grasps a smali polyurethane sponge mounted on the end of the flexible wire and pulls. For training purposes the switch closure activated a horn to signal switct: functioning. Initially the response mechanism was mourried on a portable platform. Later it was moved to the harness. Seven dogs learned the pull responce and sramferred to the harness without difficuity. Transfer to the hamess was assisted by tying the sponge on a string which hung $4-6$ inches below the harness. Groded shortering of the string during she session brought the sponge to its final position of the shoulder.
c. Sequential perfomance. The goal of this phase of training was tu establish an apprapriate sequential chain of behavior incorponating in the proper order, searching, performing information response upon locotion of ;earch stimulys, anci retuming to starting poirt.

Jwo dogs were trained th the kennel site to perform the information esponse in the presence of a tore. Responses emitted when tive tome was off were not rewarded. Scon the onses of a tone would alicit an immediate response, whereupon a second tone would be tumed on and the dog was fed. A box wos introduced and $t l$ \& dogs were allowed to approach and when within $2-3$ feet of the box the first sone was tumed on, responding sceurred and was properly reinforced. Leaving the box without responding caused the tone to be dicentinued and no reward wos given. The subjects leamed to approach the box, and later a human, in order to turn on the first or responce tone. Evintually, os the experience with the procedure developed, the first tone onset wos dielayed and responding occured spontaneously with the esproach to the search shiject. This alteration occurred smoothly so that by the time the subject was beyond sight of the handler the proximity tone wos unnecessary.

A later modification of this procedure paved highly effective in establishisg several somporents of the task in the correct sequence. In this "altersection procedure", the previously learned puill rexponse is encouroged at both the box and food pan, which, iritially ane in close proximity but sepanated by a baffie. At first, rewards are given at both the box and the pan, so, in effect, there are no imsorrect sesponces. Pan responses are gradually extinpuished until ordy responser of the bon remain. No negative or aversive stimuli are used in this procedure. As traising progresses, the box is removed further from the starting point and the boffle is foded out,

The baric components of the tatk moy be learned in a relatively shont time, but the performance frequently is marred by slow sunning speed, long pouses prior to responding after locatiang the search object, and accosional returning without responding affer sighting the box. Three manipulations were of value in correcting errors of this type.
(1) Scheduling. The subjects were required to repeot the tork seiteral times (as high as 8) prior to being rewarded once. The waricible interval of reinforcement tended to sustain high levels of performance; the effect of practive (repetition) is also beneficial in this schedule. There wor a marked irrcrease in running speed and a decrease in bath errors and latencies (fime spent sear the search object prior to responding). Hirigher schedules began to elicit the charocteristic pause prior to stanting the chain, such as is seen in the laboratory. This was particulanly true when the distance to the search object was 100 yards or greater.
(2) Inter-trial interval. A completed correct trial was the occasion to detain the dog for one minute prior to initioting the next trial. This pause had some affect on the speed in searching for the box. Aside from spocing the seward interva! there was a definite increase in anxirty manifested by tugging af the leash, whinning, and scoming movements of the head. Resease of the individual in this state reveaied good ruming speed to the object.
(3) Time-out period. This wos used on some individuals as punishsnent for consistent errors, generally of a distroctive noture. The animal was restrained on a short leash in the ored the error oceumed and left alone for intervals of five minutes or longer. Arxiety was monifested by barking and leaping, and once released, the performance was improved in the ensuing tricls. This beneficial effect was not constont throughout the session, nor wos it sonsistent with all dogs (more effective with socially dependent dogst) but it did aliow mild negotive contingencies to be ploced on unwanted behavior.
d. Searching for humans. Human beings were irtroduced into the training program by each of two methois. Both methods oppeared equally effective.

The first method (pairing and fadingi), consisted of picaing a pemon near the box, then fitting on the box, and firmally removing the box entirely. This was dore with relative ease. The subatitution of humans as the search object improved the overall performance considerably in several dogs. Greater distances were achieved without the loss in performance seen when the box wos moved a similar distance. The opinion that training to search for thumans would be an easier task wes verified.

In the second method (proximity tone), the tecinnique described earlier, in which comect texponding behavior to the bor was shaped with the gid of a tone (section cr), was used with one animal.

Performarice was good throughout the troining peniod and llanger changes in the troining sessions (increosing distance, rodical changes in environment and changes in direction of search) indicated the atwantageous properties man thas assumed with regand to the dog's search pattern.
e. Fisal training format. Two maive dogs were cibtaired for the purpose of testing a training schedule evolived from the experience gathered with the ten original dogs. The following onder of trining proved to te both rapid and reliable when tested on raive dogs.
(1) Response training. Train the subiect to make the :ufformation response first, in this case a pull response. In this period, with the ust of a tone following the switch closure, magazine and return tome training are comeomitantly taught. The resporse is also transferred from the plafform to the tramess during this period.
(2) Discrimination training. Jroin the imformation response specifically to the presence of the search object. This can be accomplisthed by either alfernation procedure or by proximity tone.
(3) Increasing distance to the search object. The procedure up to this point could probrably be automated and done at or near the kennel site. Once the distance to the search object was increosed to 10 to 20 feet it appeared beneficial to move the traiuing outtide the compound to a wooded area and begin giving the slog as much experience with warying terniin conditions as possible. The shifting of personnel both os thomeders and as search objects appeared to be imperative of this time clso. Essenticilly, winat was attempted was generalization to terrain, handler and search object (not dependent on an indidividual or specific environment') before a set pattern was establisthed and " "restrainingy" to mew situntions was necassary. This was mot completely achieved with the new dogs, but sufficient evidence wos ebtained to indicate that this method "s practical. The most vol woble information from the training of the new dogs was the foct that going out and retuming training could be dropped from the pregram and that searching behavior could be instituted by simply moving the search object away
from the twase. Directional control is achiever by usingo hand sigral to give a bearing or straight llitre to the search ebiect. Rotafion of the search object
 alline.

HII. DISOUSSION

A training procedure was develloped which would maintain complex performarce by ad dog in the field ower distances of 100 yrants or mare in? wooded terrcin (visitiallity lless than 25 yardst). Comcomitant with the troined performance was the development of a atatio tramanitter-тeceiver system which allowed information to be proseed between the thandler and the dog (soe Appendix A). A specific response was trained to be given when the search dobect was fount. This response activated ef transmitter borre tyy the dog and was intiverpreted as a tone in the thandert's neceiver.

The foll owing stheme shows the possible meanirses of the dogs' information respanse:

	Response	NYD response
Bax Present	True Posifive	Failse Negafive
Bax Albsent	failse Rosifive	True Ninegative

The response wes traired to the given orily in the event of prositive indentificaction of the searcin object. In the cabsence of a resporse, the tuandler thas a choice of two arsumptiotrs, as shown above: (1) there is truly to search object in the aren of search (保se negative)), or (2) there is a search object in the area of search that was not llocated (fanlise negetive). When a neaporse is made, the hander ogain can make either of two ailternative casumptions: (1)) the searich object thas heen 和und and indentified, or (2) the diog is corfused, is attempting to cheat, or an occidental cllosure of the switch thas occurred.

During the troining period it wos possible to examine alll of the ctbove possibilities. Responding in the abcence of the bax was wery llow in the majority of dogs and generalization to ather objects (a Glockened tree limb of the same size os the box, or a dark nock) did not ocsur. Occosionai false negatives were observed and in some cases appeared to be wind dependent
(the subject would pass close to the box and would find it on the down wind side). Sustained searching for as long as fifteen minutes was frequently observed; longer infervals ware generally interrupted by the dog returning close enough to establish visual contact with the handler and then retuming to search the area again. The search pattern was characterized by a casting left and right of the bearing originally givan. The widest sweeps occurred at the farthest distance away from the handler. Sustained search with back-and-forth casting were more frequentlv observed when the box, rather than a human, was used as the search object. The human, by virtue of its size, was more difficult to conceal in the terrain that was utilized in the early tests. Attimpts were made to confuse the dogs by placing the box 3 to 4 feet above ground level. In each case the box was located without difficulty, and the correct response was made.

Breed differences. The methods used proved to be most effective in training the Labrador Retrievers and the German Shepherds. The hound group proved to be less amenable to the training methods used. There was sufficient variation between individuals in this small sample to make no clear-cut distinction possible between the Retrievers and the Shepherds. The best dog, based on all-around performance, was a Labrador Retriever. On the other hand, this dog took slightly longer to train to a given task and was more handler dependent than the Shepherds.

Weather. The final task was not completely trained until early summer. The training of component parts of the task had occurred throughour the year. In that period training in rain, high wind, and snow storms gave some indication of performance under adverse conditions. The most consistently detrimental weather cond:tions were high temperature and hcmidity. Temperatures over 85 degrees had a decidedly adverse effect on the dogs' activity. Appetites were depressed and all subjects tended to seek cooler shelter after short working sessions. There was some slight indication of acclimatization, but this did not make up for the original decrement.

Distractions. During training sessions helicopters frequently flew overhead and trains passed on nearby tracks. At no time did these sounds interrupt the training or appear to frighten the dogs. These and other potentially distractive occurrences were well tolerated, probably as a function of habituation.

Physiological telemetry. The possibility that a dog might be killed or otherwise incapacitated while performing a search was considered. A review of physiological functions that could be telemetered to provide continuous monitoring capability was undertaken. The results of this review are presented in Appendix B.

Brain stimulation. Two animals were prepared surgically io receive brain
 with food as the reinforcement and the other was naive. Aside from the technical difficulties involved with leads, correct placement of electrodes and wound managem ment, this method shows some promise us a method of quickly training the subject.

IV. SUMMARY

1. The use of dogs to search in area and to initiate o warning radiotransmitted signal when a human is present in the area of search is feasible judging by the performance of dogs trained in a model field situation.
2. Radio equioment to receive and transmit the required information can be developed from commercially available components.
3. A training mathed utilizing contemporary techniques of behavior conditioning and control wess developed.
4. The training methad that was developed can be readily adapted for use with large numbers of eandidate dogs.
5. A physiological telemetry system to telemeter heart beat was explored and found to be feasible as a methed of monitoring the physiological integrity of dogs while searching (see Appendix B).

V. LITERATURE CITED

?. Exaliey, R. W. The United States Air Force Sentry Dog Training Center. Jour. Amer. Vet. Med. Assoc., 137. 1960.
2. Skinner, B. F. Sciences and Human Behavior. New York, MacMillan Co. 1953.
3. Breland, K., and M. Breland, A Field of Applied Animal Psychology. Amer. Psychologist, 6: 202-204. 1951.

V.H.F. Radio Command System

1. INTRODUCTION

Paragraph 19.31 of Section 19, Rules and Regulations, Voi. 6, February 1962, Federal Communications Commission, provides the following frequency allocations for "the control of remote objects or devices by radio, or for the remote actuation of devices which are used solely as a means of attracting attention":
$26.995 \mathrm{Mc} / \mathrm{s}$
$27.045 \mathrm{Mc} / \mathrm{s}$
$27.095 \mathrm{Mc} / \mathrm{s}$
$27.145 \mathrm{Mc} / \mathrm{s}$
$27.195 \mathrm{Mc} / \mathrm{s}$
$27.225 \mathrm{Mc} / \mathrm{s}$
To simplify equipment licensing, all transmitters were purchased cünimercially. Transmitters purchased appeared on the F.C.C. list of type-approved transmitters as provided for by Paragraph 19.43 of Rules and Regulations. No modifications to the transmitters were made which would violate or nullify the acceptance of the transt.. tters by the Federal Communications Commission.

Transmitters were modified model aircraft radio control systems manufactured by Citizen-Ship Radio Corp., Indianapolis, Indiana. The purchased syste ms were transistorized, lightweight and fully compatible with the other modules comprising the command radio system.

II. BASE STATION

The purpose of the base station is to generate and transmit all information to the animal, and to receive and process all information transmitted from the animal.

Although referred to here as a base station, the unit is actually portable, and, including all batteries, has a iotal weight of 10 pounds. The portability and freedom from external power sources allows the base station to be transported to any remote testing area and quickly set up near the handier.

Tho bexestion is divided inte two seporote cobinets. One cabinet houses all equipment necessary for transmission of information to the animal. The other cabiret contains all equipment necexary to receive signalz transmitted from the animal.

The antenna system is a telescopic ventical whip integral with each case. No other external antennas are required.

Two separate cases were used so that with s physical separation of approximateiy fifteen feet, simulianeous transmission and receptions could be used with a minimum of inter-channel interference.

In fuiure base stations, greater frequency separation between transmitting and receiving channels would eliminate the necessity for two separate cabinets.

Base Station Transmitter.
Power: 100 milliwatts.
Modulation: emitter injected Amplitude modulation.
Frequency: crystal controlled $27.195 \mathrm{Mc} / \mathrm{s}$.
Command Channels: ten stable sine wave frequencies from 200 to $2,000 \mathrm{cps}$.
Keying: continuous carrier. Keyed command tones, relay operated.
Controls: hand held switch box; 15 cable to transmitter.
Command Channels:
Group A: 9 distinct audio stimuli using 3 basic tones (on dog) in time pulsed combinations.

Group B: Operation of devices in remote harness.

1) two channels used for a bistable relay circuit (no longer used).
2) one channel - to actuate Brain Stimulator.

Group C: Four channels m unused spares.

The base station receiver is a crystal controlled ($27.095 \mathrm{Mc} /$ sec) superhetrodyne recniver mounted in a portable cabinet with integral power supply and antenna system. The received signals are presented audibly through a 4^{11} loudspeaker mourted in the cabinet. No attempt was made to use decoding circuits in the base station receiver to eliminate spurious reception since the received signal was easily distinguishable from background noise and extraneous transmissiuns. It is recommended, however, to include decoding circuits in succeeding equipment so that a light or other display device (tone, buzzer, etc.) will be actuated when the animal has responded in the field. This modification would serve two purposes:

1) elimination of possible operator distraction by receiver background noise, and
2) would allow other information, i.e., physiolagical data, to be multiplexed with the response information and processed internally, without the operator having to discriminate between the normal and the multiplexed signals.

Power supply: self-contuined rechargeable batteries.

III. ANIMAL MOUNTED APPARATUS

The function of the animal mounted equipment pack is 1) to provide auditory stimuli for the guidance of the animal, and 2) to transmit a signal to the base station when actuated by the dog. It is also capable of providing pulses for brain stimulating electrodes.

Limitarions.

There are several equipment limitations unique to the application of radio apparatus mounted on co free ranging animal.

1) Size and weight must be tailored to the dimensions of the animal. Even more important, the weight must be distributed in such a manner as to prevent shifting of the harness from side to side.
2) Power supplies must be lightweight and still have a long operating life between battery charges or battery replacement.
3) Severe mechanical and environmental stresses must not affect the operation of the equipment. A running dog can produce a high level of mechanical stress on the radio gear. Space and weight limitations do not allow the use of shock mounting for critical components as is standard in vehicular equipment.
4) The equipment must continue to operate under severe environmental conditions, such as the dog running through water and mud, rain and snow falling on the equipment, etc.
5) Physical limitations prevent the use of highly efficient or large antenna systems. Establishing reliable communications paths becomes a major factor in the overall efficiency of the communication system.

The equipment in use now has been able to withstand the environmental and mechanical stresses mentioned above and is functioning satisfactorily.

Interference.
Normal field application of portable receivers does not require as strict control over valume consistency and intercommand silencing as does transmission of audiostimuli to an animal subjeci. The radio frequency spectrum near $27 \mathrm{Mc} / \mathrm{s}$ is densely populated with spurious transmission. To eliminate variations in audible stimulus volume, the auditory stimuli are generated within the animal-carried equipinent, and the radio is used only to turn the audio tones on and off.

An additional advantage that is goined from the use of internally generated tones, is that the radio receiving apparatus may be used to actuate other equipment in the animal pack, such as a brain st:mulator, iransmitter tester, etc. In operation, the loudspeaker contaised in the animal harness remains completely silent, except when the command signal is given. A stimulus tone is then heard at a constant pre-set volume.

A block diagram of the animal mounted system is shown in Figure 1.
Command Receiver.
Frequency of operation: crystal controlled, $27.195 \mathrm{Mc} / \mathrm{sec}$.
Type of receiver: superhetrodyne.
Fig, 1- ANHMAL MOUNTED V.H.F. RADIO SYSTEM

20A

Decoding system: 10 channel resomant reed decorder followed by solid stote pulse integrators and triggor circuitry to convent reed pulses into D.C. levels suitable for internal functions.

Audio stimulus tones (arbitrarily chosen):

```
tone \(A=750\) s.p.s. (law distortion sine wave)
tone \(B=2,000\) c.p.s.
tone \(\mathrm{C}=3,200 \mathrm{c}\). p.s.
```

Audis output: maximum i watt with master volume control and individual tone volume controls.

Power supply: internal rechargeable or conventional dry battery (Le'clanche).
Transmitter.
Frequency: erystal controlled, $27.095 \mathrm{Mc} / \mathrm{s}$
Output power: 100 milliwats.
Modulation: amplitude modulated C.W. (continuous wave) carrier. Modulation frequercy 1600 c.p.s.

Keying: carrier of modulation off. Response turns on carrier and modulation for the duration of the response.

Response feedback: tronsmitter modulation is fed to oudio system in harness to indicare satisfactory actuation of response mechanism.

Remote relay: the remote relay allows the base station to disconnect the response feedback loop as was called for in an earier training procedure. This segment of the equipment is no longer used due to a change in training methods.

Packaging.
Pluguin modular rechniques are used for all eiements of the animal mounted system. The modules and wiring harness are contained in a canyas saddlebag mounted on the leather dag hamess. Any element may be quickly removed for repairs or replacement. Overall weight of harness and equipment is approximately two pounds.

Weatherproofing.

The animal mounted system is capable of operoting in roin or snow. Dint and mud do not offect performance. The unit con withstand total immersion in vater for short periods of time. The system will function when wet so long as the antenna gystem is not underwater.

Operational range.
Naminal 300 yards maximum 500 yards.

Physiological Telemetry Studies

I. INTRODUCTION

An investigotion was made of the feasibility of equipping a dog with physiological detection appanatus (in this case to detect hearbeat: cardiotachometer), and tranamitting the signal to a base station. Such information enobles the operator quickly and occurately to detemine whether his onimal is alive and within the range of the trunsmitter-receiver system.

Several key factors serve as contraints in the design of a practical system:

The dog-carried apparatus must:
0. be lightweight
b. be small
c. be suitable for field use
d. hove low power requirements
e. be an integral part of other apparatus on the dog both physically and electrically.

The receiving station can be one of three types:
a. A self-contained, hand held (or pack-mounted) portable receiving station which gives the operator minimal information, i.e., heartbeat is or is not being detected. The readout for this system would consist of either a tone or a light which is energized when a heartbeat is no longer detected.
b. A semi-portable receiving station which is placed in a jeep or other vehicle generating its own power and capable of carrying moderately heavy equipment. The quantitative and qualitative information displayed in this system is greater than that in a_{0}. Readout would be provided either by a portable acilloscope, on which the heartbeat could be observed, or a specker system with which the heartbeat signal could be cudibly monitored.

Abstract

c. A stationary receiving unit allaws an even better enol.ention: of denatiad inimimotion. Readout is exsentially the some as in b. It should be noted, bowever, that this is ementially a labonstory setup and is not suitable for field une.

A block diogran of the physidogical telemetry system is stown in Figure 2.

The two electrodes ore placed on the dog's chest. The weak signal which is detected must be amplified before being tansmitted. At the receiving station the signal is funther amplified and presented to the aperator in either audio or visual form.

II. METHODS

Electrodes and Leads.
Two commercial electrodes wese employed. They are $1 / 2$ inch in diometer and slightly concave. When the concave surface is placed against the bare dkin in the .nanner described below, a relatively noise-free signal (heart muscle potential) is obtained.

It should be mentioned at this point that the conventional procedure for detecting heartbeat waveforms involves the use of electrode poste to improve contact with the skin surface. In our experience with this transwitter, only a slight improvement in signal-to-noise ratio was obtained with the use of electrode paste when the electrodes were ploced according to the technique described in the subsequent paragraphs. This improvement in signal-tc-noise ratio occurs as a reduction in artifact pickup rather than as an increase in signal strength. Without the use of electrode paste the only preliminary operation necessary is shaving and cleaning of the skin.

The electrodes can be attached to a snuggly fitting leather hamess. The electrodes project $1 / 2 \mathrm{in}$. obove the inside surface of the hamess, thas insuring smooth, firm contoct with the skin.

Satisfactory results were obtained with the electrodes ploced on the night side, two inches apart (center to center), with the most ventral electrode positioned approximately 2 inches from the stermum. Anterior-posterior axid position is at the 4 th or 5 th intercostal spoce in the lower $1 / 3$ of the frorox.

24A

Leưds are crimpea to the eiectrodes and follow thes strortest path to the transmitier. They are kept as close together as possible to minimize extroneous noise pickup. This is mosi effectively accomplished by twisting the two leads togerher.
-Braider. and tinned copper shielcing serves adequately as lead wire since it resists breaking when flexed. Soldered joints at the electrodes should be avoided as they connot take the stresses to which they will necessarily be subjected. Solid wire should be explicitly avoicied.

Amplifier - Transmitter.

The amplifier iransmitter package is manufactured by Epsco, Inc., as Bicom System Madel 124A Amplifier Transmitter. This unit is primarily intended for use with confined subjects. The use of an internal antenna and very low transmission power allows excellent reception up to 50 feet, but the system becomes unreliable at distances greater than 200 feet. The sysiem was chosen for the present investigation because it is commercially available. Systerms have been designed for free range biotelemetry. Such systems, however, are ayailable only as iaboratory models, and, to date, are not stock commercial items.

The Epsco unit has t^{i}.e following features:
a. Small size $-\left(2.6^{\prime \prime} \times 2.3^{\prime \prime} \times 1^{\prime \prime}\right)$
b. Lightweight - (5 oz.)
c. The use of F.M. transmission to minimize external noise interference.
d. The transmitter is tuneatle through the commercial F.M. broadcast band ($88-108 \mathrm{Mc}$). This enables the transmission frequersy to be located away from any particular commercial F.M. station and still be tuned in by a commercial F.M. receiver.
e. The trarsmitter mit is sensitive to change in distance from the animal's body. Any chang in this distance causes a slight corresponding shift in transmission frequency which is observable on an oscilloscope as vertical disolacesuent cisa o l.orizontal zenter line. Nhen the dog pants, his pack, and hence, the transmitter, follows the chest excursions. In the present experiments, an abserver was able to distinguish between stationary panting and running artifact. Running produces an irregular frequency shift, while panting tends to be observed as a periodiu, almost sinusoidal, vertical displacement about a center
frequency. The overall effect is to emphasize the existing respiration information. Let it be noted, howevar, that the ability to detect small chnnges in frequency is due to the fact that the transmitter delivers a very weak signol (about 10 milliwatts). If the transmitter power ware increased much beyond its present level, the receiver would not be able to detect small transmission frequency changes, and the net effect would be a slight reduction in available respiratory information. Recordings that were obtained indicate that there is little or no difference between the respiratory information available through a direct connection between the electrodes and the recorder, and an indirect connection (via the transmitter). In the latter case, the transmitter and receiver were in close proximity to each other. If the dog were sent into the field (transmitter-receiver distance increased) with the transmitter attached loosely to his pack, the respiratory information available would be slightly greater than if the transmitter were rigidly attached.

Antenna - Receiver.
The antenna system consists of a single, folded dipole, curved on each end to reduce directional effects. It is the type normally employed for F.M. broadcast and television reception. Due to the low power of the transmitter, the receiver antenna is placed 50 feet above the ground.

The receiver is part of the Biocom system. Is is a modified standard r.M. tuner. The difference between the Biocom unit and any standard runer lies in the fact that the modified receiver output allows the operator to moniror the D.C. output of the discriminator, hence, the low frequency signals often encountered in biological signals may be monitored without attenuation.

Readout.
In the present study, the output of the receiver was fed into a Tektronix Dual-Beam Model 502 oscilloscope. In addition, the animal was monitored with a physiograph to obtain permanent recordings.

III. DISCUSSION

Preliminary investigations indicate that a practical telemetry systern suitable to present needs can be developed. The following statements offer a generalized approach to the problem of future development of on effective system.
u. A Arūnsmititer simiiar ro she Épsco model can be used, but it should have:

1) higher power cuiput, and/or
2) an external anienna.

The transmitter must have enough power to allow the receiver to function with optimal efficiency at the maximum range desired. This modification would greatly improve the quantity and quality of heartbeat information obtained within the range of the telemetry system.
b. The F.M. mode of transmission and reception is satisfactory and preferable to A.M. . Receivers of adequate sensitivity are available in miniaturized form for use in a hand-held monitoring system. The use of more transmission power and a sensitive receiver alleviates the need for a large antenna mounted high above the ground.
c. Most af the work involved in developing a compact receiver unit will be concemed with the readout portion of the devise. As a broad approach to the problem, it is suggested that a trensistorized chopper amplifier be used at the receiver output. The reception of heart muscle potentials couid trigger a circuit which would in furn prevent a readout indication from being energized. A chopper amplifier provides all of the low frequency response necessary for adequate performance. A tone or light would indicate to the operitor of a hand-held receiving tevice that the dog is either out of range or that his heart is no longer functioning. Supplementary indicator(s) might be used to indicate malfunction of equipment.

In the semi-portable system (vehicle mounted), a field oscilloscope or speaker might be used as a monitoring device, thus increasing the amount of usable information.

Scurces of Supply

EQUIPMENT:

Knight Radio Broadcaster/amplifiess "83-4-70s

Allied Electronics
100 N. Western Avenue Chicago, Illinois

Small and large custom-made dag hamesses and saddle bags
The Horse fair Olney, Maryland

TMs-10 All Transistor 10 channel radio control transmitter
ZR-10 channel relayless all transistor receiver-companion to TMs-10
Citizenship Radio Corporation 810 East 64th Street
Indianapolis 20, Indiana
Universal feeder - deep cup
Ralph Gerbrands
Arlington 74, Massachusetts
Miniature 2-watt encapsulated audio amplifiers"7255 2 BT
Electronic Wholesalers, Inc.
2345 Sherman Avenue, N.W.
Washington, D. C.
Model SPX tronsistorized Xmitter with 1 set receiving crystals and one set transmitting crystals

Citizenship Radio Corporation 810 East 64th Street
Indianapolis, Indiana

Aniinail mounred auditory stimulus system
Gulton Medical Instruments Willow Grove, Penisylvania
. Heart sound microphone with adjustable strap and cable "92-200-70
E and M Instrument Company 6030 England Street
Houston, Texas
Dog collars and harness straps
The Horse Fair
Olney, Maryland
DOGS:

German Shepherds Beagles

Lone Trail Kenrels
P.O. Box 46

Freidensburg, Pennsylvania
Labrador Retrievers
El Mona Kennels
c/o Carl E. Carlock
1435 West 11th Avenue
Gary, Indiana
Coon Hounds
Mr. Frank Wells
Chase, Maryland

APPENDIX B

TRAINING HANUAL FOR

FREE-RANGING CARINE PERSONNEL RECOMNAISSANCE

CHAPTER 1
CHRPTER 2
Section I
Section II
Section III
CHAPTER 3
Section I
Section II
Section III
Section IV
Section V
CHAPTER 4
Section I
Section II
CHAPTER 5
Section I
Section II
CHAPTER 6
CHAFTER 7
Section I
Section II
Section III
CHAPTER 8
Section I
Section II
Section III
Section IV
CHAPTER 9

- GENERAL
- training and prefearations
- Equipment
$-$
- BASIC OFF-LEASH SCOUTIMC
- Selection of Training Area
- Extended Distance Scouting
- ADVANCED OFF-LEASH SCOUTING
- Initial Trail Situations
- Patrol Introduction
- DELIBERATE DIVERSIONS
- alert detection
- General
- Frocedures of Analysis
- General Activity Detection
- training for various field situations
- Recovery of the Dog
- Responsive Sitting
- Remedying the False Alert
- Operational Detection
- WIND AND SCENT

CHAPTER I

GENERAL

1. PURPOSE AND SCOPE

This manual is a guide for training dogs in free-ranging personnel reconnaissance. Its purpose is to expand the utility of the scout dog to situations where the dog is off his leash and out of the handler's sight. The training assumes that the direction of movement of the military to be protected is indicated by some trail, path or road. Under these circumstances, the dog is to proceed 200-300 yards in advance of the unit and handler and is to indicate contact with the sight, scent or sound (usualiy scent) of a human by promptly sitting. This halt in the dog's movement will be indicated to the handler by rudio.

2. ACQUIBITION AND CARE OF DOGS

Q.. Department of the Army field manual FM 20-20 should be used as a guide for the selection and screening of dogs for scouting purposes (par. 202). One of the most qualifying traits necessary for success is a high intelligence.
b. FM 20-20 should also be used as a guide in handling, reeding and general care of the dogs.

CHAPTERR 2

training and praparaticme

Section I. EQUIPMRNT

3. Standard Equipment

Standard scouting equipwent needed for use in the program consists of:
(1) Shoulder harness.
(2) Short training and discipline leash.
(3) Choke collar.
(4) A 25 foot leash.
(5) A leather collar.
4. SPECIALIZED EQUIPTIENT

Specialized equipant used in the training is as follows:
(1) A standard leather collar with a special transmitter built in and a 2 1/2 foot antenna attached. This part of the equipment is described in detail in Appexdix C of this report and will hereafter be referred to as the special collar. lihen worn by the dog, the transmitter gravitates underneath the neck with the antenna extending above the neck. The transmitter is tuned to transmit at 50.7 cps .
(2) A pair of Army walkie-talkies are needed both to re-

Abstract

ceive ine uignai transmitted from the special collar on the dos and for communications between the handler and the decoy. (3) A training whistle with the frequency adjusted so audibility is beyond human perception. This insures a more private operation in comanding the dog to return to the handler.

Section II. EquIftent UTILIZATION

5. UTILIZATION OF EQUIPNEITT
a. A leather collar should be used to orient the rog to the transmitting collar during the early phases of training. The special collar should be used only when the dog is proficient on long scouting, problems, and the handler is ready to begin his analysis of detecting alerts.
b. It is importent to remember that the harness and special collar used in actual scouting, should be put on the dog only when he is ready to begin an imnediate scouting problem. The handler should always remove the equipment as soon as possible after the dog returns from an alert. The harness and special collar should never be on the dog during any type of obedience training.

Section III. HANDLER-DOG RELATIONSHIPS
6. Of primary importance for producing a capable dog in this pro-
gram is develoment it hū aog's confidence to perform the task. This attitude of confidence and respect must exist between the handler and his dog in order to create good commication during the training pheses. A good relatioaship way be established by the following principles.
(2.) Complete discipline control over the dog is the most necessary factor. Euphasis must be placed on discipline control (FM 20-20). Particular attention aust be given to off-leash crmmands as it is in this situation that the dog is to give his most important performance. Each and every command should be followed by a consequence. If the dog is given the comand "SIT" and does not do it, he should be brought to the position sharply with a terse "NO" to the behavior the dog did perion. The dog should not be pleaded vith by repeating the comand. The dog should be praised as a consequence of his successes. This should be routine and frequent.
(2) The break between problems during the training sessions is the best time to reward the dog with verbsi praise and petting for a job well done. Always measure the "reward" with his accomplishments. Measures of reward should include the duration and general enthusissm of the break. (See par. 10).
(3) The dog will reveal an individual characteristic of
ples habit after a short time. A conscientious handler ahould exploit this habit as far as possible. This crestes a bit of personal friendship which will eventially cause the dog to become more handler depeadent. Thus, the handler geins more control over the dog winich is vitally important when the dog is required to work out of sight of the handler.
(4) Praise during the training sessions should be delivered in a soft approving voice. A loud shout mey distract or confuse the dog.
(5) All of the factors of praise, including duration and general excitement of the break, neasured with the dog's performance, generates within the dog a realization of his success. Essentially, results of the entire training program are dependent upon the effectiveness of comunication between the handler and the dog he is training.

CHAPIER 3

TRAIL INTRODUCTION - OM-LEASH

Section I. BASIC SCOUIING
7. The dog should undergo at least one month of training in scouting on-leash before he is allowed to scuint ofl-leash. When the training area for a session is reached, it is acivisable to first give to the dog about fifteen minutes of obedience training. This is beneficial as a "warn-up" period and, also, makes the dog realize the seriousness of the forthcoming scouting session. Begisuning scouting procedures sre described in the next three sections.

Section II. DECOY DETECTION

8. The decoy is first placed to the left or right of the path approximately $50-75$ yards down a traic or path so that the path is dowe wind of his position. During the early part of this phase of training, a fairly straight trail or path should be selected. The harness, then the leather collar is put on the dog. He should a)ways be commanded to "SIT" and "STAY" while the equipnent is being put on. Next the 25 foot leash is attached to the harness and the dos is positioned on the comand "HEEL" to fact down the path in the direction of the decoy. A soft but firm command of "SEARCR" is given, and at the same tine the dog la urged forwart until the leash becomes taunt. The dog
shouid be kept st a briak pace and never be allowed to wander off the path. The comands " NO " and "SEARCR" should accomplish this. The dog's interest ghould always be kept on the problem of searching. If the dog persigts in putting his nose to the ground to sniff, the handler should discourage this by the command "No" paired with a sharp snap of the leash.
9. a. Proceeding along the trail or pathway, the handler should observe the dog closely to detect the exact monent the dog has alerted on the decoy. As described in F in $20-20$, the alert may be given by tensing the whole body, raising his hackles, pricking up his ears, or by other signa. A sharply observant handler will soon learn to recognize any individual peculiarity which is an indication of an alert. The comand "STAY" should be given softly at this point. After the dog has held his position at least thirty seconds he should be returned to a heeling position by use of the whistle (see par. 10).
b. On some occesions the dog should be allowed to give chase to the decoy while on the leash. However, on most occasions after the response to "SIAY" has been performed, a shary tug on the leash with a firm comand of "SIT" should be given without allowing any further movement from the dog. The tension on the leash should be relaxed while the decoy quietly exposes himself. The decoy should be careful not to disiract the dag from his sitting position, but only expose himself enough to allow the dog and the handier to know he is there and that the dog is correct. The hander should lavishiy praise
the dog while the dez fis siill sitting. The hendler should then return his dog the length of the leash to a heeling position using the whiatle to recall the dog. The decoy remains aeutral and does not further influence the dog.
c. When the dog has given evidence of boredom in scouting he should be allowed to give chase to the deroy. This idea should be used with discretion as the ultimate gosl in the program is to have the dog willing to sit upon contacting a decoy. Giving chase should bo used only in carl. phases of training, and even then if used too frequently, the dog may became confused by alternately sitting and chasing.

Section III. RETURN BY WHISTLE
10. As the \log becomes proficient at sitting on-leash upon detectine the decoy, he should be introduced to returning to the handler by comand of a whistle. in early pnases the handler may simply keep tension on the 25 foot leash and after the dog given an alert alterrately blow the winistle and give the coumand "Come",

Section IV. THE BREAK PERIOD
11. After each problem the handler shouid inmediately remove the aquipment and praise the dog according to the principles outlined in par. 6 of thas report. The break should never be interrupted by any serious commend and should last about $10-15$ minutes ending with
the command "COME".

Section V. GETERAL PROBLP WTENBIFICATION

12. A. After the dog becones proficient at free-range scouting on short trials, and begins sitting whes he has detected the decoy without comands from the handler, partinaler situations in the field should be intensified.
b. Each trial should be lengthened to a distance of 200300 yards. Pethways should remain fairly straight and easy for the dog to follow. Confusing functions should be avoided if possible.
c. On some problems the handler may allow the leash to drag along behind the dog to orient the dog to a free-ranging status. The handler should gradually let the dog scout well in advance, but never so far that he cannot give a verbal command. At this stage, visual contact is still necessary in order to give these commands.
d. Greater emphasis should be placed on the dog responding properly when the decoy is detected by imediately sitting.

BASIC OFF-LEASH SCOUTIRG
13. When the dog has successfully mastered the principle of onleash scouting, and the handier is confident that he will sit when encountering the decoy or "ambush", the leash should be removed from the training program, The handler should have complete offwleash control of his dog before he is allowed to scout in a frce-ranging status.

Section I. SELECTION OF THE TRAINIIG AREA
14. The beginning sessions of off-leash training are best situated on long and generally straight paths or roadways. These conditions allow the handler to increase the distance that separates him from the dog, yet at the same time affords visual contact for controling the dog's movements. The path ideally should be flanked on either side by heavy foliage and trees which create 2 natural guide for the dog to follow. The more obvious the path, the less temptaition the dog has to wander off the trail.

Section II. EXTENDED DISTANCE SCOUTING

15. A. As outlined earlier in this report, the dog is briefly oriented to a free-ranging status with the 25 foot leash trailing freeiy behind him while the handler gradually assumes a patrolling diatance
 Ing without leaving the trail, it is or lîitile consequience iun remoie the leash and allow the dog to search well in advance of the handler. The long straight trail is importent in the first several sessions because the dog must realize the position of the handler, and that he is scouting on his own. Realizing this new status, the dog may attempt to:
(1) Leave the trail.
(2) Wander uround, sniffing the ground.
(3) Keep a pace too fast for a patrol to follow.

Any behavior of this nature must be averted by strongly reprimanding the dog with "NO" and fmediately giving him a short session of obedience training. He must at all times realize his mistakes, however he should never be punished to the extent that he becomes uncooperative and unwilling to work.
b. The routine iraining procedures must remain consistent,
(1) The harness and special collar should be used only when the dog is scouting.
(2) The break must be included after each problem.
(3) The dog must be kept in the habit of sitting immediately upon detecting the decoy.

Section I. InITIAL TRAII SITUATIONS

16. a. The conditions of the field training area should be altered somewhat as the dog makes progress in scouting effectively.
b. The long atraight trail should be gradually phased out of the training program and the following situations simulating actual patrol conditions should be introduced to the dog. The training stage at which the modifications are to be employed should be at the discretion of the handier.
(1) Dense forested areas.
(2) Numerous curves which allow the dog to bec me independent of the handier.
(3) Generally rugged terrain with open fields interspersed along the path or roadway. This tests the ability of the dog to remain on the path.
(4) Path junctions. If the handler is aware of a junction in the trail, he should try to keep the dog within sight so he can be commanded to pursue the correct trail.
c. To effectively wake a successful transition to these obstructed trail problems, the following ideas may be introduced in
the first phase of trsining.
(1) The initial obstruction should be located approximately 300-400 yards down trail, with the decoy positioned upwind near the immediate vicinity of the curve, crest, etc. (see drawing). He should be placed so the dog will detect his scent only AFIER the dog passes the crest and is out of sight of the handler. After the dos has detected the presence of the decoy and sits, he is returned by whistle to the handler who shouid remain out of sight at the approximate position indicated.

This procedure does not allow the dog to become too far out of controlling range and at the ame time the dog is conditioned to depend entirely upon his own intuition in responding to an alert.
(2) Following successful detection in this problem, the positioning of the decoy becomes more important. In the previous example, the decoy should gradually be piaced farther down the trail with the handler remaining out of sight behind the crest or curve. This

Abstract

affords an analysis of the reaction of the dog under increased time intervals while scouting by himself. In as many instances as passible the decoy may secretiy observe the dos's scouting procedures and inform the handler of any irregularities.

Section II. PARROL INMRODUCTIOR
17. After the dog has mastered thoroughly the routine of searching, detection, and alerting, both in and out of sight of his handier, he must learn to work with a patrol. If the dog is unwilling to leave the group, the handler should comand him to "SEARCA" from a starting position of approximately 10-15 yards in front of the patrol. In some cases the number of people in the patrol should be small (3) at first. The patrol wiil normally advance along et a distance of 200~300 yards behind the dog on long problems.

DELIEERATF DIVERSLOXS

18. DECOY DISTRACTIONS

The decoy should initiate into the training program various types of diversions. Such diversionary tactics should be employed only after the dog has given the alert by sitting. The dog should always remain motionless regardless of the intensity of the excitement. The dog should be strongly reprimanded with a stern " KO " if he attempts to venture into the position of the decoy.
19. Diversionery situations are an integral part of training; and the dog must be repeatediy subjected to any conditions which may distract him. Any dog that habitually becomes excited should be removed from the program.

CHAPTER 7

ALERRI DETECTIOR

Section I. GENERAL
20. The handler should begin training in detecting the alert given by the dog only when the dog has mastered the routine of free-range scouting and responding. It is importent that the handler become extremely familiar with the overall behavior of the dog as once the dog begins scouting out of sight of the handler, his activity must be interpreted by use of the tranamitter.

Section II. PROCEDURES OF ANALYSIS

21. There are two procedures the handler may use in detecting trail alerts given by the dog.
(1) Visual observation.

The handler will benefi+ by setting up short problems which allow him to observe the dog executing an alert, and at the same time, listen to the transmitted tone. This allows the handier to know what his dog's alert "sounds like" on the transmitter.
(2) Communications with the decoy.

Once the problems extend to ambusins positioned out
of aight of the kendlez; the decoy chould observe the dog from the time the dos in within mis aight, and inform the handler by walkiemtalkie of the exact moment the dog has detected his presence. Thus, the hander is able to analyze the reception of the tone at the exact moment the alert has been given.

Section III. GENERAL ACTIVITY DETECTION
22. On extended distance problems, as the handar reatain 200-300 yards behind the dog, he shouli be able to identify the movement of the dog by a consistent rhythm of the tone. Usually the dog will establish e fixed pace when searching which the handler can easdily recognize, and anv variations to this pace (running, trotting, valking, a temporary stop or the actual alert) can be easily detected. If the dog has a tendency to stop often after he is out of the handier's visual range, the handler may use the duration of the steady tone as a guide to determine whether or not the alext has been given. The dog should not stop for mare than a few seconds if he has not detected an ambush.

CHAPTER B

Section I. RECOVERY OF THE DOG
23. a. The dog must be trained to respond to the wistle and retura to the handier at any given moment, regardiess of whether or not the doz has detected an ambush. However, the important function of the whistle is the recovery of the dog once the alert has been given, and "fals:" retuma should be kept to a minimum.
b. Training procsdures for imediete response to the whistle simply involve long periods is repetitious drill (see par. 10).

Section rt. RESPOMSIVE SITTING
24. To achieve the proper response of sitting upon detecting the ambush, the dog may be aubjected to the following training procedure:
(1) The handler as a decoy.
(a) Training area.

A densely forested ares with several foot paths should be used as the training area.
(b) Procedure.

The dog is commanded to "STAY" along trie trail, and the handler walks awtay around a bend and
positions himself in the manner of an ano bush 300-500 yards ircm the dog. He then gives the comand "COME". (TO eliminate confusion, the retura whistle should not be used in this situation.) Tae handler must alvays keep silent after he is avare that the dog is scoutins for him. As the dog approsches his position, the handier lcoks for the exact mement of de. tection at which time the handler cowmands the dog to "STAY". Emphasis should be placed on a sharp, immediate response. It is very irportant that the dog be praised highly and immediately for a good effort. This system should be repeated constantly until the dog becomes very proficient at sitting and staying inmediately upon contacting the decoy either visually or by scent.
(2) Advanced training procedures.

Distances from the dog to the decoy should be lengthened until limited by audibility of the command "COME". The training area should be changed to one with more underbrush and path junciions. In addition to routine scoutiag, this situation allows the handler to observe the dog's behavior under more complex conditions. The dog must never be allowed to wander off the trail.

Ge must be kept bighly attentive throughout the auspa tion of the training session.

Section III. REMEDYING TYE FALSE ALMFT
25. If the dog consistently stops slons the trail after he has begun to scout out of sight, the hasdler will be unable to datect an alert pia the tone. A probable solution to ending the atopping habit is a skort gession of obedience training with the disciplime leash. At any moment during a scouting problem, if the dog habitusiliy stons ior any reason other than the alert, the handier should firmly comand the dog to "Cosg". Winen the dog returns, the handier should take off all equipment put on the choke collar and leash, and then comance the obedience training. Tris training should be briak and rapid with many terse commends. The equipment should then be put on the dog again, and the problem resumed. This exercise should be used as often as necessary.

Section IV. OPERATIONAL DETECTION

26. I. In actual field operations, no one can presuppose the presence and position of an ambush, or whether or not one exists at all. The handler, considering the absence of this information, shoild test his ability at accurately identifying an ambush by setting up a planned route and allowing the decoy(s) to position himelf anywhere along that assigned route. A third person should be designated es a patrol leader and should know the exact position of the ambush.
b. If felse clerts are a constant problem in these tests, problems should be included where no ambush exiet... These problems will sharpen the dog-handler efficiency and possibly show the trail conditions under which the false alerts occur.

CHAPIER 9

HIRD AND SCENTI

27. The wind is the most important variable condition the handler must consider in inis anelysis of elert, etection. Beveral principles are important with reapect to the moven, it of the wind. These are:
(1) The stronger the wind, the more nerrow the scent cone will be.
(2) The stronger the wind, the greater is the distance at which the dog may detect the scent.
(3) The more obstructed the wind (by trees and terrain), the more likely the dog is to indicate the wrong direction to the decoy.
(4) The more the wind is coming from behind the dog, the more likely it is that he will pass the ambush area before giving an alert.
(5) In any wind over three knots the dog must be cossdered as searching only the side of the trail from which the wind is coming.

These principles indicate several basic procedures for the handler and the free-ranging reconnaissance dog. For example:

```
Principle no. 1) indicated that under conditions of
    a strong wind the dog should not be yushed
```

	to a rapid pace. If he is, he is likely to run through a scent cone without giving an alert.
Principle no. 2)	describes a condition which may be an
	advantage or disadvantage. If the wind
	is coming from behind, the dog may be use-
	less because he will be so far u_{i} the trail
	by the time he reaches the scent cone and
	gives an alert that the patrol will be
	well within the inne of fire of the amm
	bush. However, if the wind is more favor-
	able and strong, the dog will likely
	give his best performance, giving a long
	warning and a strong alert.
Principle no. 3)	indicates that in heavy vegetation or
	rough terrain, the direction indicated by
	the dog during an alert should be vieved
	with some suspicion. He indicates the
	bearing from which the scent arrives and
	not necessarily the direction of the source
	of the scent.
Principles no. $4 * 5$) indicate cautica about considering areasas investigated and clear.	

APPENDIX C

[^0]: Gee: Final report for parametric study of pulsed radio frequency transmission. Task 1. Contract DA-19-001-AMC-314(X).

[^1]: "Source of supply: Granular carbon, size 80 , grade Lax. National Carbon Co., Inc., Cleveland, Ohio. Division of Union Cerbide and Carbon Corp.

